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Recent findings regarding corrosion of post-tensioned bridges have highlighted 

the urgent need to develop reliable methods to predict the behavior of the structural 

system after damage has occurred and inspection techniques to assess the condition of the 

structure. Corrosion in strands is undesirable in that it often progresses without visual 

signs of distress, but may cause a brittle failure. To complicate the inspection, access to 

the strands for visual inspection is usually blocked by the concrete cross section.  

To date, significant efforts have been taken to improve the durability of the post-

tensioned bridges. However, the behavior of the post-tensioned bridges with corrosion 

damage is not clearly understood and the currently available inspection techniques tend to 

provide only limited information about the nature and extent of the damage.  

The research project discussed in this dissertation was developed to evaluate the 

feasibility of using the vibration technique to detect and estimate the extent of damage in 

an external tendon due to corrosion. To accomplish this goal, damage was induced in five 

specimens, which were monitored periodically to correlate the measured changes in the 
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frequency response to the level of damage. The induced damage simulated the 

degradation of a post-tensioned structure from corrosion. This dissertation describes the 

experimental program and the numerical scheme used to estimate the condition of the 

specimens. 

Three types of specimens were tested during the experimental phase of the 

research: individual strands, cables specimens, and external tendons. A series of tension 

tests of individual strands were conducted to investigate changes in the uniaxial behavior 

after damage was induced. Simulated damage included uniform corrosion of the strand, 

mechanical wire cuts, and an initial defect in one wire. Three cable specimens and one 

tendon specimen were subjected to fatigue loading. The loading was selected to simulate 

the loss of cross-sectional area in the strands, and also caused grout damage. The 

frequency response of the specimens was recorded periodically during the fatigue tests 

and acoustic sensors were used to detect the occurrence of wire breaks. A second tendon 

specimen was exposed to an acid solution to simulate the hydrogen induced cracking in 

the strand at three different locations along the length of the specimen. A number of wires 

fractured during the exposure test and damage was inspected visually. Natural 

frequencies were also measured periodically. 

The residual prestressing force of the specimens was extracted from the measured 

natural frequencies. The stiff string model was used to determine optimum values of 

tension and flexural stiffness from the frequency response. The numerical results from 

this optimization demonstrated the feasibility of using the vibration technique as a 

nondestructive testing method for external tendons. 
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Chapter 1: Introduction 

 

Post-tensioned concrete bridges became popular in Europe in the 1950s, and are 

widely recognized as economical structures. The use of high-strength steels to apply 

prestress dramatically increased the length of spans that can be achieved in concrete 

bridges and compensates for the low tensile strength of concrete. However, recent 

observations of corrosion damage have raised serious concerns regarding the durability of 

post-tensioned concrete bridges. Effective inspection of critical tendons is often 

impossible due to limited access and an incomplete understanding of how corrosion 

influences the structural characteristics of the tendons. 

This dissertation focuses on the use of vibration signatures to detect corrosion 

damage in external, post-tensioned tendons. The experimental phases of the research may 

be divided into two parts.  In the first, the uniaxial behavior of individual strands with and 

without damage was investigated. In the second, the frequency response of five grouted 

tendons was monitored as the extent of damage was increased to evaluate the sensitivity 

of the natural frequencies to the extent of damage. An optimization scheme was also 

developed to estimate the change in applied tension and structural parameters from the 

measured frequency response. 

1.1 DURABILITY OF POST-TENSIONED BRIDGES  

The concept of prestressed concrete structures was introduced in Europe in the 

early 20th century, and the number of post-tensioned bridges increased dramatically 

during the reconstruction boom following World War II. During the early stages of 

development of post-tensioned construction, the benefits of the effective crack control 

from the applied prestressing were overestimated. Post-tensioned structures were 

originally considered to be nearly maintenance-free and potential damage caused by 

corrosion was not recognized. The early post-tensioned bridges, however, were 

constructed with inadequate consideration of waterproofing and poor or improper details. 
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In addition, inappropriate materials, such as quenched or tempered steel and corrosive 

grouts, were used in construction. Appropriate grouting procedures were also not 

established. Therefore, the tendons were often exposed to aggressive environments 

without proper protection against corrosion. 

The consequences of corrosion damage were not understood until the post-

tensioned bridges had been in service for many years. In spite of the collapse of two 

pedestrian bridges in the United Kingdom in the 1960s, full attention was not paid to 

durability of post-tensioned construction until the Ynys-y-Gwas Bridge collapsed 

suddenly in 1985. The fact that no signs of deterioration were observed before this bridge 

collapsed under its self-weight only highlighted the seriousness of the situation. The UK 

Department of Transport issued a moratorium on the construction of internally post-

tensioned bridges in 1992 (Woodward 2001), which was partially lifted in 1996. Internal, 

post-tensioned segmental systems are still banned in the UK (Loudon 2006).  

To date, considerable effort has been taken to resolve concerns related to the 

durability of post-tensioned construction. The Post-Tensioning Institute (PTI) published 

grouting specifications in 2001 and the American Segmental Bridge Institute (ASBI) 

initiated a grouting certification program in 2001 (DeHaven 2003; Poston et al 2003). 

The Florida Department of Transportation inspected several bridges using state-of-the-art 

nondestructive testing techniques and evaluated the feasibility of each method in 2001 

and 2003 (FDOT 2001; FDOT 2003). Florida DOT also published the guidelines for the 

construction of post-tensioned structures (FDOT 2002). 

Two international workshops were sponsored by the fédération internationale du 

béton (fib) and International Association for Bridge and Structural Engineering (IABSE) 

(2001, 2004) to share experiences regarding the durability of the post-tensioned structures. 

The American Society of Nondestructive Testing (ASNT) held a conference in 2004 to 

discuss state-of-the-art inspection techniques for detecting corrosion in post-tensioned 

bridges. 

In spite of these efforts to evaluate the durability of existing post-tensioned 

bridges, a single, accepted inspection technique has not been established. Current 
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techniques provide only limited information about the extent of damage. Restricted 

access to the tendons and the variation of material properties and dimensions of the post-

tensioned bridges often limit the effectiveness of the inspection techniques. 

1.2 POST-TENSIONED BRIDGES WITH EXTERNAL TENDONS 

Although the concepts of prestressing bridges using internal and external post-

tensioned tendons were developed at the same time, internal tendons were considered to 

be more durable than external tendons due to the corrosion protection provided by 

embedding the tendon in concrete. Therefore, external tendons were used primarily to 

repair and strengthen existing structures until relatively recently (Virlogeux 1990).  

The most distinct advantage of bridges with external tendons compared with 

bridges with internal tendons is that the webs and flanges of the concrete sections are 

considerably thinner when external tendons are used, resulting in lighter structures. 

External tendons are commonly used with box sections. The tendons are anchored in 

diaphragms at the ends of the span and are continuous through deviators, which control 

the profile of the tendon (Figure 1.1). Each tendon typically comprises numerous 

prestressing strands, which are enclosed in a high-density polyethylene (HDPE) pipe. The 

pipe is typically filled with cementitious grout. 

External tendons are especially well suited for the construction of segmental 

bridges. The continuity of the ducts can be easily maintained between spans and the 

misalignment of ducts at a joint can be prevented. Within the state of Texas, three 

segmental bridges with external tendons have been constructed in the past 20 years: the 

San Antonio Y project (Figure 1.2), the Neches River Bridge, and US 183 in Austin. 



 
Figure 1.1 Layout of the Long Beach Bridge (Powell et al 1990) 

 
Figure 1.2 San Antonio Y Project 

External tendons provide two primary advantages over internal tendons with 

respect to durability: (1) the tendons are easier to inspect because the majority of the 

length of the tendon is exposed, and (2) if necessary, an external tendon can be replaced 

without demolition of the bridge.  In spite of these advantages, corrosion damage has 

been reported in several bridges in the US with external tendons (Poston et al 2003). 

 In Florida, severely corroded tendons were found on the Niles Channel Bridge, 

the Mid-Bay Bridge, and the Sunshine Skyway Bridge (Figure 1.3). While the extent of 

the observed damage was not considered to be sufficient to undermine the structural 
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integrity of the bridges, the durability concerns were considered to be serious enough to 

initiate a state-wide inspection program (Freyermuth 2001). 

 

 

 
Figure 1.3 Corrosion Damage Observed on the Mid-Bay Bridge 

 (FDOT 2001) 

1.3 RESEARCH OBJECTIVES AND SCOPE 

The research program discussed in this dissertation was developed to quantify the 

changes in the structural response of external post-tensioned tendons as corrosion damage 

accumulates and to determine if the extent of damage can be extracted from the observed 

changes in the natural frequencies of the tendon. The natural frequencies are expected to 

decrease as the extent of corrosion damage increases; but the change in natural 

frequencies with the level of damage is not understood at present. This method of 

nondestructive evaluation was selected for study because of the ease of application and 

the relatively modest cost of required equipment. 

In evaluating the extent of corrosion damage, the loss of cross-sectional area of 

the strand is typically assumed to be directly related to the loss of the prestress force. 
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However, this simple assumption does not appear to be valid, as tensile stress can be 

redistributed to adjacent wires after a wire fractures and the fractured wire recovers a 

portion of the tensile stress due to internal friction among wires. These phenomena 

influence the overall response of a post-tensioned tendon, but are typically not considered 

when evaluating a damaged tendon. Background information about the structural 

characteristics of corroded strand and current nondestructive techniques used to evaluate 

external tendons is presented in Chapter 2. 

The experimental program is discussed in three chapters in this dissertation. In 

order to investigate the behavior of strands after damage, individual strands were tested in 

tension in Chapter 3. The elongation behavior of the strands directly influences the level 

of residual prestressing in the external tendon. Three types of damage were simulated: 

uniform corrosion on the surface of the strand, strand with cut wire(s), and strand with an 

initial defect. From the uniaxial tests, material properties such as the elastic modulus, the 

apparent modulus of elasticity and the tensile strength were determined. Also, the 

characteristics such as stress recovery and stress redistribution were investigated. 

The response of three cable specimens that were subjected to fatigue loads is 

summarized in Chapter 4. Each cable specimen comprised two 0.6-in. strands stressed to 

50% of guaranteed ultimate tensile strength (GUTS). The fatigue loads caused wire 

fractures and cracks in the grout. The transverse stiffness of the specimens and natural 

frequencies were recorded periodically during the tests. After the conclusion of the 

fatigue tests, the specimens were disassembled to determine the extent of damage. 

The response of two tendon specimens is discussed in Chapter 5. Tendon 01 

comprised twelve 0.6-in. strands stressed to 60% of GUTS and was subjected to fatigue 

loading to accumulate damage near one end of the specimen. The transverse stiffness and 

natural frequencies were recorded periodically during the fatigue test. Tendon 02 

comprised nine 0.6-in. strands stressed to 80% of GUTS.  At three locations along the 

length of the tendon, the strands were exposed to acid to induce corrosion damage. 

Natural frequencies were recorded periodically during the exposure test. 
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Two analytical models are introduced in Chapter 6 to represent the frequency 

response of the specimens. The optimization scheme was developed to estimate the 

values of four structural parameters that best matched the measured frequency response 

of the test specimens before damage was induced. The sensitivity of response to the value 

of the structural parameters was evaluated. 

The same approach was used in Chapter 7 to estimate the variation in frequencies 

with increasing damage during the tests. The differences between the parameters inferred 

from the numerical optimization and known conditions of the specimens are various 

points during the experimental program were assessed to evaluate the applicability of the 

optimization scheme. The results were used to evaluate the limitations of using the 

vibration technique to detect damage in external tendons. Conclusions are summarized in 

Chapter 8. 
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Chapter 2: Literature Review 

 

Throughout this dissertation, relationships are identified between the structural 

properties of post-tensioned tendons and the physical condition of the prestressing strand.  

However, background information about the structural properties of the strand and 

tendons is needed to interpret the observed trends. Relevant background information is 

presented in this chapter. 

Corrosion of prestressing strand is discussed in Section 2.1, and observed 

corrosion of external post-tensioned tendons is summarized in Section 2.2. Variations in 

the structural properties of corroded strand are presented in Section 2.3 and changes in 

the lateral stiffness and frequency response of a large-scale cable specimen with 

increasing fatigue damage are discussed in Section 2.4. Techniques currently used to 

evaluate the condition of external tendons are summarized in Section 2.5 and the 

fundamental concepts used in the vibration technique are introduced in Section 2.6.  

2.1 CORROSION OF PRESTRESSING STRAND 

Corrosion is a destructive electrochemical reaction that results in a loss of metal to 

the surrounding environment. Two forms of corrosion are discussed in this section: 

uniform corrosion, which may occur in all steel embedded in concrete, and corrosion 

caused by hydrogen induced cracking and stress corrosion cracking, which is most 

prevalent in prestressed concrete structures. 

2.1.1 Uniform Corrosion 

The uniform corrosion is associated with loss of surface steel. The removed metal 

chemically reacts with substances in the surrounding environment and forms corrosion 

products. Because this form of corrosion is an electrochemical reaction requiring the 

exchange of electrons, equilibrium phases of the electrochemical system are often defined 



using a Pourbaix diagram. As shown in Figure 2.1, the stable phases of the 

electrochemical system are defined in terms of oxidation power (potential) and pH.  

In general, the equilibrium phases of a metal may be separated into three regions: 

immunity, corrosion and passivation. If the system reaches equilibrium within the 

immunity region, the metal stays intact and no loss of metal ion occurs. However, if the 

system reaches equilibrium within a corrosion region, electrons are exchanged and 

corrosion products are generated. If this system reaches equilibrium within a passivation 

region, the chemical reaction is favored within the given environment, but the corrosion 

rate is significantly reduced due to the formation of a protective film on the surface of the 

metal. 

 
Figure 2.1 Schematic Pourbaix Diagram (Jones 1996) 

 

For concrete structures, it is generally agreed that the presence of chloride ions 

initiates the corrosion of steel by compromising the protective passive film. Once the 

passive layer is breached, the corrosion process is driven by the presence of moisture and 

oxygen. Within the corrosion phase, Fe++ or Fe+++ ions are available by anodic reactions 

and then these ions form corrosion products such as  or . 2Fe(OH) 3Fe(OH)
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Within the passivity phase, iron oxides such as  and  are produced 

which form a protective film (ACI Committee 222 2001). In general, the pH of sound 

concrete (and grout) is within the range of 13.0 to 13.5. Therefore, the embedded steel is 

protected from the aggressive environment within the concrete by the protective film.  

Cracks in the concrete, however, form pathways for chloride ions, water, and oxygen to 

penetrate the concrete and initiate corrosion.  

3 4Fe O 2 3Fe O

2.1.2 Hydrogen Induced Cracking and Stress Corrosion Cracking 

Hydrogen induced cracking is a highly undesirable form of corrosion, because the 

corrosion can not be detected visually. Hydrogen induced cracking develops when 

sufficient hydrogen exists on the surface of the metal that hydrogen atoms dissolve into 

the metal lattice (the crystal lattice of steel is larger than that of atomic hydrogen). Cracks 

form along the path of the hydrogen as it penetrates into the steel. For post-tensioned 

tendons, hydrogen induced cracking may result in sudden failure when the crack extends 

a sufficient depth that the intact area of the cross section does not have sufficient strength 

to resist the applied tension. 

The corrosion mechanism associated with hydrogen induced cracking of 

prestressing steel is still under debate. Some researchers link hydrogen induced cracking 

with stress corrosion cracking (Nürnberger 2001). Stress corrosion cracking occurs when 

the metal is subjected to a constant tensile stress and is exposed to a corrosive 

environment. Because the characteristics and appearance of hydrogen induced cracking 

and stress corrosion cracking are nearly identical, the cause of the damage can often not 

be determined without a microscopic investigation (Table 2.1). Also, it should be noted 

that as level of tension in the strand approaches to yielding, the likelihood of corrosion 

accelerates correspondingly.  

Hydrogen induced cracking and stress corrosion cracking rarely occur in 

reinforced concrete structures because the susceptibility to these forms of corrosion 

increases with the tensile strength of the metal. Case studies in Germany (fib 2003) 
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indicated that unqualified prestressing steel was particularly susceptible to this form of 

corrosion. 

 

Table 2.1 Characteristics of Stress Corrosion Cracking and  
Hydrogen Induced Cracking (Jones 1996) 

 Stress Corrosion Cracking Hydrogen Induced Cracking 
Stress static tensile static tensile 
Corrosion products in the crack absent (usually) absent (usually) 
Crack surface appearance cleavage like cleavage like 

Near maximum strength level 
susceptible, but hydrogen 
induced crack often 
predominates 

accelerates 

 

2.2 CORROSION OF POST-TENSIONED TENDONS 

Corrosion of post-tensioned tendons is often critical for the structural integrity of 

a bridge. The prestressing tendon is a major structural element and supports a 

considerable fraction of the external load. The strands are manufactured from high 

strength steel and are typically prestressed to 70 to 80% of GUTS. Therefore, 

deterioration of the stands represents a considerable reduction in structural capacity. The 

risk of brittle failure due to hydrogen induced cracking and stress corrosion cracking is 

also significant.  

For most external tendons, corrosion protection is provided by a multi-layer 

system. The concrete box forms the first barrier against external aggressive agents. The 

HDPE ducts extend along the entire length of the tendons and are filled with grout. 

Corrosion of strand is often correlated with the presence of voids in the grout.  The grout 

is intended to protect the strand from corrosion due to the high pH environment.  If the 

grout completely fills the post-tensioning duct, the likelihood of corrosion of the strands 

is quite low. 

However, experience indicates that these protective layers can be compromised in 

many ways. Likely causes of corrosion in post-tensioned bridges are illustrated in Figure 

2.2, where potential paths for aggressive agents to reach to prestressing steels are shown 



(Matt 2001). Minor construction details, such as a drainage pipes or electrical inserts, 

often compromise the corrosion protection system for the prestressing steel.  

To date, design alternatives to improve the durability of post-tensioned bridges 

have been reported, but no unique solution appears to meet the requirements for all cases. 

Suggestions include replacing the cementitious grout with wax or grease and using less 

prestressing steel and more conventional reinforcement (Jungwirth 2001). In Japan, 

transparent ducts have been used to construct external post-tensioned tendons to facilitate 

inspection (Mutsuyoshi 2001). 

 

 
1.Defective wearing course (e.g. cracks) 
2.Missing or defective waterproofing 
membrane incl. edge areas 
3.Defective drainage intakes and pipes 
4.Wrongly placed outlets for the drainage of 
wearing course and waterproofing 
5.Leaking expansion joint 
6.Cracked and leaking construction or element 
joints 

7.Inserts (e.g. for electricity) 
8.Defective concrete cover 
9.Partly or fully open grouting in and outlets 
(vents) 
10.Leaking,damaged metallic ducts 
mechanically or by corrosion 
11.Cracked and porous pocket concrete 
12.Grout voids at tendon high points 

Figure 2.2 Likely Causes of Corrosion of Post-Tensioned Tendons (Matt 2001) 

 

While corrosion of post-tensioned tendons motivated this dissertation, it is 

important to understand that the major problem of durability of post-tensioned bridges is 
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not the performance of the tendons during the service life of the bridge, but the difficulty 

associated with inspection of the tendons. Post-tensioned bridges have been proven to be 

an economic and durable structural system. However, the integrity of some post-

tensioned bridges has been challenged by corrosion damage. Therefore, a combination of 

adequate protective measures and an effective inspection scheme would ensure the 

durability of the post-tensioned bridges. 

2.3 STRUCTURAL PROPERTIES OF CORRODED STRAND 

Three studies that discuss the behavior of corroded prestressing strand are 

summarized in this section. In spite of the large number of research studies regarding the 

durability of post-tensioned bridges, few have focused on the influence of corrosion on 

the structural properties of the strand. As a result, interpretation of damaged external 

tendons is often based on the simplified assumption that the loss of cross-sectional area 

due to by corrosion is proportional to the loss of applied prestress force. However, recent 

studies indicate that considerable capacity can be recovered due to the geometry of the 

strands and internal friction among the wires.  

2.3.1 Individual High Strength Wires 

The mechanical properties of high strength wires at different levels of corrosion 

were reported by Nakamura et al. (2002). In order to stimulate corrosion damage, the 5-

mm diameter wires were wrapped in wet gauze at 40 C°. Three different exposure 

periods were used: 90 days, 250 days and 360 days. After significant corrosion products 

developed on the surface of the specimens, a series of tests were conducted to investigate 

the mechanical properties of the wire. 



The measured properties of corroded wires are shown in Figure 2.3. The mass loss 

increased as the exposure period increased (Figure 2.3a). The axial strength (calculated 

using the nominal cross-sectional area) and the elongation capacity decreased as the 

corrosion damage increased (Figure 2.3b and Figure 2.3d). However, when the actual 

cross-sectional area was used to calculate the tensile strength, the loss of area had almost 

no influence on the response (Figure 2.3c). These trends indicate that the axial tensile 

strength of the corroded wire is proportional to the actual cross-sectional area of the 

corroded wire.   

 

 

 

(a) Mass loss of corroded wires (b) Tensile strength 

 
(c) Actual tensile strength (d) Elongation test 

Figure 2.3 Mechanical Properties of Wire Specimens 
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The fatigue capacity of wire decreases as the extent of corrosion damage increases 

(Figure 2.4a). Undamaged specimens had fatigue lives that were nearly ten times longer 

than those of the corroded specimens. Another set of elongation test results are displayed 

in Figure 2.4(b). The surface of corroded wires was severely pitted and covered with 

corrosion products at the end of the exposure period. In order to study the relationship 

between the fatigue capacity and surface roughness, the surface irregularities were 

removed by machining the diameter of the wire from 5 mm to 4 mm. The test results 

indicated that the smoothed reconditioned wires exhibited nearly the same elongation 

capacity as the undamaged wires. The result indicates that the elongation capacity is more 

closely related to the surface roughness than the cross-sectional area.  

 

(a) Fatigue life of corroded wire (b) Elongation of smoothed wires 

Figure 2.4 Fatigue and Elongation Test after Surface Treatment 

 

2.3.2 Corroded Strand  

Sason (2002) studied the mechanical properties of 0.5-in. diameter, seven-wire 

strand at six levels of corrosion. The study was designed to establish a visual standard for 

evaluation of lightly corroded strands. Industry design guides (PCI 1985, FIP 1991) allow 

the use of strands with slight amounts of corrosion, but practical techniques for 

quantifying the extent of corrosion in the field do not exist. Six specimens with different 

levels of corrosion were tested. The results with visual indicators are presented in Table 
 15



2.2. Surface corrosion was removed by rubbing the surface of the strand with a 3MTM 

brush. 

The test results clearly indicate that corrosion damage caused a reduction in the 

tensile strength and the yield strength, but a clear trend was not observed in the 

elongation data. It appears that the induced levels of corrosion were too low to generate 

an appreciable loss in capacity, as all specimens satisfied the strength and elongation 

requirements in ASTM A 416:  

Breaking Strength: 41.3 kip 

Load at 1 Percent Extension: 37.2 kip 

Ultimate Elongation (24-in. Gauge Length): 3.5 % 

 

 

Table 2.2 Visual Indicator and Mechanical Properties of Specimen  

Visual Indicator 
Sample  

No. Before Cleaning After Cleaning 

Breaking 
Strength 

(kip) 

Load at 
1% 

Extension 
(kip) 

Ultimate 
Elongation

(%) 

1 
 

43.8 40.0 5.00 

2 
 

43.7 39.8 4.95 

3 
 

43.5 39.7 5.73 

4 
 

43.3 39.6 5.21 

5 
 

42.8 38.9 5.73 

6 
 

42.4 38.8 5.21 
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2.3.3 Corroded Strand with Broken Wires 

MacDougall et al. (2002) studied the elongation behavior of corroded strands with 

broken wires. Six specimens were installed in an 18-m (59-ft) long reaction frame and 

pulled to a maximum elongation of 120 mm (4.7 in.). The diameter of strands was 13 mm 

(0.5 in.) and the tensile strength of the strand was 1860 MPa (270 ksi). In order to induce 

corrosion on the surface of the specimens, the wires in the strand were unraveled and 

exposed to a 5% sodium chloride solution for two weeks. The wires were then 

reassembled and exposed to an environment of 100% humidity.  Two specimens were 

exposed to the humid environment for 10 days, HC (10), and two specimens for 34 days, 

HC (34). The other two specimens (LC) were only exposed to the sodium chloride 

solution. Within each pair of specimens, one wire was cut in one specimen and two wires 

were cut in the companion specimen.  After the environmental exposure, strain gages 

were attached along the length of the wires. 

The measured elongation behavior of HC (10) in the first loading cycle is 

displayed in Figure 2.5. The continuous line represents the expected behavior of an 

undamaged strand and the dashed line represents the expected behavior of a strand with 

the appropriate number of broken wires without consideration of internal friction. The 

continuous plot of cross marks represents the measured response. The test results 

revealed that the elongation behavior of corroded strands with one or two wire breaks 

was linear within the range of applied stress, a maximum stress of approximately 190 ksi. 

Furthermore, the modulus of the damaged specimens was nearly identical to that of the 

undamaged strand.  

The strain distributions of the lightly corroded strand (LC) with two wire breaks 

and the heavily corroded strand (HC 34) with two wire breaks are shown in Figure 2.6. 

The horizontal axis corresponds to distance from midspan of the specimens – wire breaks 

are located at midspan. The vertical axis represents the normalized strain values. 

 



(a) Strand with one wire break (b) Strand with two wire breaks 

Figure 2.5 Elongation Behavior of Corroded Strand 

 

The test results indicate that the cut wire recovered axial stress as the distance 

from the wire break increased. The researchers designated the distance from the point 

where the original capacity of broken wire was achieved to the location of wire break as a 

transfer length, La. Based on the results in Figure 2.6, the transfer length is significantly 

shorter for the heavily corroded strand.  

 

 
(a) Lightly-corroded strand (LC) (b) Heavily-corroded strand (HC 34) 

Figure 2.6 Strain Distribution of Strand with Two Wire Breaks  

The test results suggest the corrosion products influence the elongation behavior 

of damaged strands. The internal friction due to the geometry of stands and corrosion 

products compensated for the capacity lost by the two broken wires. However, it should 
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be noted that wires in the test specimens did not unravel during the tests because the 

wires were broken before the tensile load was applied.  

2.4 VARIATION OF LATERAL STIFFNESS WITH FATIGUE DAMAGE 

Poser (2001) and Ridd (2004) conducted twelve fatigue tests of full-scale stay 

cable specimens. The length of specimens was about 33 ft and most of specimens 

comprised nineteen, 0.6-in. diameter strands stressed to 40% of GUTS (Figure 2.7).  
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Figure 2.7 Geometry of Cable Specimen 7 

 

In many aspects, the structural characteristics of the cable specimens are similar to 

those of an external tendon. The behavior of both systems is governed by applied 

prestressing. Also, the cable specimens were constructed using the same components as 

the external tendons (prestressing strands, cementitious grout, HDPE pipe, and an anchor 

system). Therefore, it was assumed that the behavior of the large-scale cable specimens 

was essentially the same as that of an external tendon. 

The specimens were subjected to constant-amplitude displacement cycles at 

midspan and were monitored continuously for wire breaks using acoustic sensors. In 

Figure 2.8, the peak loads applied to achieve the designated positive and negative 

displacements for Specimen 9 are shown. For the constant amplitude of ±1.6 in., the 

required load decreased as damage accumulated. The variation of required load was 

interpreted as the variation of transverse stiffness. The vertical lines on this plot represent 

wire breaks reported by the acoustic sensors. During the test, wire breaks were 

concentrated at each end and near midspan of the specimen. The test was terminated after 

76 wire fractures were reported over 2,566,000 cycles.  
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Region A 

Region B 

Figure 2.8 Peak Load during Fatigue Test for Specimen 7 (Ridd 2004) 

The test results indicate that the transverse stiffness was not linearly related to the 

number of wire fractures.  For example, numerous wire fractures occurred in region A 

and B, but transverse stiffness was nearly constant. The response of region A is 

particularly important because this region represents the structural behavior at the early 

stages of deterioration. 

The natural frequencies of another specimen, which had nominally the same 

geometry as Specimen 7, were measured before and after the fatigue tests. The first six 

modes are plotted in Figure 2.9. During the fatigue tests, the natural frequencies 

decreased by approximately 20% in each mode, but the second frequency decreased 

nearly 55%. Because the mass and length of the specimen did not change during the 

fatigue tests, the differences in the natural frequencies were interpreted as a reduction in 

the applied tension. 
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Figure 2.9 Variation of Natural Frequencies in Cable-Stay Specimen 

2.5 INSPECTION OF EXTERNAL POST-TENSIONED TENDONS 

The importance of inspection to detect corrosion damage in post-tensioned 

tendons was discussed in Section 2.2.  Various approaches have been attempted; however, 

no single inspection technique consistently provides all the needed information. While 

numerous NDT techniques for civil engineering applications are discussed in documents 

from ACI Committee 228 (1998) and fib (2003), each method currently has distinct 

shortcomings for post-tensioned tendons such as significant signal attenuation or safety 

issues. 

In order to conduct a direct investigation of the corrosion potential, electrical 

inspection technologies, such as the half-cell potential, require that the flow of electrons 

be measured. Direct contact to the prestressing steel is required to measure the half-cell 

potential. However, most post-tensioned tendons were not constructed with direct access 

to the strands. As a result, NDT technologies are generally designed to detect other 

relevant properties that can be used to infer the condition of the strand, rather than the 

presence of corrosion itself. Typical corrosion damage of strands (wire breaks and severe 

pitting) is shown in Figure 2.10.  

 



(a) Fractured Wires (b) Severe Pitting  

Figure 2.10 Degradation of Strand due to Corrosion (Corven Engineering 2001; 

Poston et al 2003) 

Inspection methods for post-tensioned tendons are generally designed to detect 

the presence of two major deficiencies within the tendons: wire breaks and grout voids. 

While significant loss of cross-sectional area can be caused by pitting corrosion, a wire 

break often represents the minimum resolution of NDT methods, such as the magnetic-

flux method and remanent magnetism method. These methods generate a magnetic field 

in a discrete distance from the tendon and detect irregularities of the magnetic field 

caused by discontinuous strands. The tendon can also be scanned using X-ray or 

ultrasonic methods which are sufficient to identify severe pitting of the strand if the angle 

of image can be aligned properly with the damaged strands. In general, inspection 

technologies targeting the detection of wire breaks require precise and heavy equipment 

and advanced techniques to interpret the data. As a result, these technologies tend to 

require a long testing period and are quite expensive. Because post-tensioned bridges 

typically have a large number of external tendons, these methods are only used to 

evaluate specific tendons, which are suspected of having experienced corrosion damage. 

Grout voids are often used as an alternative indicator of potential corrosion 

damage. The grout is the last barrier against corrosion; therefore, compromised grout 

implicates significant potential for corrosion damage. Practically, corrosion is not a 
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concern in solid grout. Stress wave methods, such as impact echo method, thermal scan 

or X-ray, can be used for this purpose. These methods idealize the grout as a medium for 

delivering an input signal, such as a stress wave, and discontinuities are detected in the 

reflected signals. As a result, these tests are only able to detect the presence of a grout 

void, but provide no quantitative information about location of the strand relative to the 

void. Therefore, evaluations based on the presence of a grout void tend to be conservative.  

Four video images from an endoscope with different grout void conditions are 

displayed in Figure 2.11. In (a) and (b), the strands are partially exposed to the air in the 

duct. In (c), strands are completely exposed to the air. In (d), no strand is exposed within 

the void. While all images indicate the presence of severe grout voids, the corrective 

action is different. For example, immediate regrouting may be necessary for the case of 

(a), (b) and (c), but no action may be necessary for the case of (d). However, because the 

methods of detecting grout voids can only verify the existence of the grout void, the 

assessment of grout condition is made based on the worst case scenario.  

In North America, the first attempt to identify appropriate NDT methods for 

detecting the presence of corrosion in post-tensioned tendons was funded by the National 

Cooperative Highway Research Program (NCHRP) (Ciolko et al. 1999). Fifteen NDT 

methods were reviewed to assess the feasibility of using the inspection methods to detect 

corrosion in post-tensioned construction. Each method was evaluated using a variety of 

criteria. After the assessment, it was concluded that none of the NDT techniques 

reviewed was sufficient to satisfy the intended criteria in terms of precision and accuracy. 

In 2001, the Florida Department of Transportation initiated a state-of-the-art 

inspection program for detecting corrosion damage in external tendons in the Mid-Bay 

Bridge (Corven Engineering 2001). Three techniques including the borescope inspection, 

the vibration technique, and the magnetic-flux method were used.  In addition, visual 

inspection and soundings were used to identify tendons with likely corrosion problem 

(Figure 2.12). 
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Figure 2.11 Visual Grout Void Results from Bore Scope: (a),(b) Partial strand 

exposure, (c) Complete strand exposure, (d) No strand exposure (DMJM Harris 2003) 

 

 

 
(a) Vibration Technique (b) Magnetic-Flux Method 

Figure 2.12 Mid-Bay Bridge Inspection Program (Corven Engineering 2001) 

 

The borescope inspection was considered as to be the only effective method for 

investigating anchorage regions due to congestion of the reinforcement and the presence 

(a) (b) (c)

(d) 



of large concrete diaphragms. Both vibration and magnetic-flux methods detected general 

corrosion damage, but the resolution and accuracy of the methods were still questioned.  

At present, it appears that the reliability of NDT techniques for the evaluating 

external tendons is still not sufficient. Currently, each NDT technique provides partial 

information about the extent of damage within the tendon. Additional research to detect 

corrosion in the external tendons is underway. In 2003, various advanced technologies, 

such as the magnetic flux leakage method and remanent magnetism method, were 

suggested during an international symposium in Berlin (Figure 2.13). Time domain 

reflectometry techniques, where a probe is embedded in the external tendon during 

construction, are being developed by Chajes et al. (2003).  

 

 

(a) Magnetic flux leakage method (b) Remanent magnetism method 

Figure 2.13 Equipment used for NDT of Tendons 
(Bergamini et al 2003; Scheel et al 2003) 

 

2.6 VIBRATION TECHNIQUE 

The vibration technique was selected for detailed study in this investigation.  A 

distinct advantage of this method is the relatively low cost of the equipment needed and 

the relative ease of interpreting the measured response. The vibration technique is used to 

assess the global integrity of a structure by measuring the natural frequencies. Because 
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the natural frequencies are related to the mass and stiffness of the structure or component, 

a reduction in stiffness should be accompanied by a reduction in the natural frequencies 

(Eq. 2.1). Furthermore, it should be noted that the vibration technique is strictly only 

valid when the behavior of the structure is in the elastic range of response. 

 

0=+ kxxm && ,  
m
k

=ω  (Eq. 2.1)

where  m = mass, k = stiffness, ω = circular natural frequency (rad/sec) 

 

In order to apply the vibration technique to post-tensioned tendons, assumptions 

must be made about the boundary conditions. As shown in Figure 2.14, a continuous 

tendon is often divided into multiple sections by deviators.  The displacements at each 

end of the tendon and at the intermediate supports are typically assumed to be zero. Each 

segment of an external tendon may then be assumed to be an individual structural 

element. Therefore, the measured natural frequencies represent the response of the 

individual segments. Differences between the responses of nominally identical segments 

were used as an indication of the presence of damage within the tendon.  

 
Figure 2.14 Mid-Bay Bridge Span Layout (Corven Engineering 2001) 

 

2.6.1 Frequency-Domain Data 

The acceleration response of the structure is measured in the time domain and 

transferred into the frequency domain to evaluate the natural frequencies.  The discrete 

Fourier transform (DFT) was used in this investigation. The DFT is based on the 

principle of Fourier series which states that any arbitrary function can be equivalently 
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represented by the infinite summation of harmonic functions with various periods and 

amplitudes.  

The definition of DFT is given in Eq. 2.2: 

∑
−

=

−=
1

0

))/(2exp(
N

t
tm NmitxX π  (Eq. 2.2) 

where , 0 1 1[ ,  ,  ,  ]t Nx x x x −= K [0,  1,  2,  ,  1]m N= −K   
 

where xt represents a time series and N represents the number of total samples. The 

resolution of the transformed series in the frequency domain is determined by the number 

of samples and the sampling period:  
)/(1 tNf Δ=Δ  (Eq. 2.3) 

where  = resolution in frequency domain, fΔ tΔ  = sampling period  
 

It is important to use a sample rate that is sufficient to capture the desired 

frequency response. Sampling theory states that digital data can be reproduced if the 

frequency is less than the Nyquist frequency: 

)2/(1 tf Nyquist Δ⋅=  (Eq. 2.4) 

As a result, the Nyquist frequency is often used for the criteria to determine the 

capacity of DAQ system. The measured response of civil engineering structures often 

includes a considerable amount of noise. Therefore, it is customary to design the DAQ 

system conservatively. For example, Sansalone (1997) recommended using a sampling 

rate that is capable of capturing a maximum frequency that is 10 times the desired 

maximum frequency. 
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2.6.2 Vibration Technique Applied to External Post-Tensioned Tendons 

Application of the vibration technique to external tendons is straight forward.  

External tendons are typically relatively simple structural systems. Continuous tendons 

are typically divided into multiple 30 to 50-ft long segments by deviators and diaphragms 

(Figure 2.14), and are typically stressed to 70 to 80% of GUTS. As a result of the 

relatively short length of each segment and high level of prestress, the initial position of 



the tendon can typically be assumed to be straight. Therefore, the behavior of external 

tendon can be interpreted to be dominated by the applied tension without considering the 

geometric nonlinearities. 

Because external tendons are enclosed within a concrete box girder, the inspector 

typically has access to the duct along the length of the external tendon. This provides 

flexibility in selecting the locations of sensors and the locations where the vibrations are 

induced (Figure 2.15). The measured natural frequencies are sensitive to the 

corresponding mode shapes; therefore, direct access permits the most efficient sensor 

locations to be selected. 

 

 
Figure 2.15 Preliminary Vibration Test for Cable Specimen 

 

The vibration technique was used during the detailed inspection of the Mid-Bay 

Bridge in northwest Florida in 2000 (Corven Engineering 2001).  As shown in Figure 

2.14, each tendon in the bridge is divided into three segments by the deviators, and each 

segment of each tendon was evaluated independently during the inspection.  Vibrations 

were induced in the tendons by striking the duct with a hammer and the resulting 

acceleration response was recorded.  The first two natural frequencies were extracted 

from the measured response and used to evaluate the condition of each tendon. 
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Each segment of tendon was idealized as having fixed boundary conditions at the 

ends and constant values of mass per unit length, m, and flexural stiffness, EI, along the 

length L.  The governing differential equation corresponding to a stiff string (Eq. 2.5) was 

used to relate these parameters to the measured natural frequencies. 
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where T = applied tension, E = elastic modulus, I = moment of inertia, and m = mass per unit 
length 

 

Additional information about this model and the corresponding natural frequencies is 

given in Chapter 6. 

Values of m and EI were calculated based on the geometry of the tendon cross 

section and the specified material properties.  The measured clear length of each segment 

was used.  The values of T corresponding to both of the measured frequencies were 

calculated, and the average of these values was used in subsequent analyses. 

In the absence of corrosion damage, the calculated value of the applied tension 

was expected to be equal in the three segments of each tendon.  However, minor 

variations were observed.  The results from 140 spans, each containing six tendons, are 

plotted in Figure 2.16.  In all tendons, segment A corresponds to the section of tendon 

between the south diaphragm and the south deviator, segment B corresponds the to 

middle section of tendon, and segment C corresponds to the section of tendon between 

the north deviator and the north diaphragm (Figure 2.14).  Variations in the calculated 

tension on the order of ±6% were common, and interpreted to mean that significant 

damage had not occurred within the tendon.  In contrast, differences on the order of 25% 

were observed in one tendon from Span 9 (Figure 2.17).  Subsequent investigation of the 

north segment of this tendon indicated the presence of severe corrosion and wire breaks 

(Corven Engineering 2001). 
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Figure 2.16  Tensile Stress per Strand Extracted from Measured Frequencies 

in Tendons on the Mid-Bay Bridge (Corven Engineering 2001) 

 

 
Figure 2.17  Variations in Tensile Forces Calculated for Each Segment 

of Tendon in Span 9 of Mid-Bay Bridge (Corven Engineering 2001) 
 

The vibration technique is considered to be most appropriate for identifying 

tendons that have experienced significant levels of damage.  Conducting vibration tests of 

all the tendons provides information about the expected variability of the measurements 

and detailed inspections can then be focused on the tendons that exhibited large 
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differences in the calculated tensile stresses.  The primary limitation of the vibration 

technique is that the underlying analytical model is based on the assumption of fixed 

boundary conditions and uniform distributions of mass and flexural stiffness along the 

length of the tendon.  These conditions are often not present in the actual tendon (Sagüės 

2004). 
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Chapter 3: Uniaxial Tests of Individual Strand 

 

Prestressing strand is used as the primary structural component in post-tensioned 

tendons. During design, the strand is typically idealized as having a circular cross section 

with a cross-sectional area equal to the total area of the wires. However, the helical 

arrangement of the seven wires influences the axial response of the strand, especially 

when the strand has sustained damage. A series of uniaxial tests of strand are discussed in 

this chapter to obtain basic information about the stress-strain behavior of strand. 

The results of nineteen tests are reported in this chapter. The specimens may be 

divided into four groups depending on the type of damage induced: 

(1) The prefix “UND” is used to identify the undamaged specimens. Five specimens 

were tested in this group.  

(2) The prefix “COR” is used to identify the specimens with uniform corrosion on the 

surface of the wires before the tension tests. The level of corrosion was varied by 

increasing the length of the time that the specimens were exposed to a saltwater 

environment. Two specimens were tested at each of three levels of corrosion.  

(3) The prefix “CUT” is used to identify the specimens where individual wires were 

cut before the tension tests. Two specimens were tested with one cut wire and two 

specimens were tested with two cut wires.  

(4) The prefix “DEF” is used to identify the specimens where an intentional defect in 

one wire was created before the tension tests. One wire was partially cut to 

measure the stress redistribution that occurs after a wire fractures. Four specimens 

with initial defects were tested.  

Parameters measured during the tests included the tensile strength, modulus of elasticity, 

and apparent modulus of elasticity of the strand (Table 3.1). The tension tests were 

conducted in three phases and the testing procedures and instrumentation varied in each 

phase. All specimens, however, were taken from the same spool of strand. The 



mechanical properties of the strand, as reported on the mill certificate, are summarized in 

Table 3.2. 

The setup for each phase of testing is discussed in Section 3.1.  The procedures 

used to induce damage in the test specimens are described in Section 3.2, and the test 

results from each phase are summarized in Section 3.3 through Section 3.5. 

 

Table 3.1 List of Single Strand Specimens 
 

 

 

 Damage  Phase Tensile 
Strength 

Elastic 
Modulus 

Apparent 
Modulus 

UND 1 None  x x 

UND 2 None  x x 

UND 3 None 

1 

 x x 

UND 4 None x   

UND 5 None x   

COR 1 2-mo exposure  x x 

COR 2 2-mo exposure  x x 

COR 3 4-mo exposure x x x 

COR 4 4-mo exposure x x x 

COR 5 5.5-mo exposure x x x 

COR 6 5.5-mo exposure x x x 

CUT 1 1 wire cut x   

CUT 2 1 wire cut x x x 

CUT 3 2 wires cut x   

CUT 4 2 wires cut 

2 

x x  

DEF 1 1 wire with initial defect   x 

DEF 2 1 wire with initial defect   x 

DEF 3 1 wire with initial defect   x 

DEF 4 1 wire with initial defect 

3 

  x 
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Table 3.2 Mechanical Properties of Strand Reported on Mill Certificate 

Grade 270 

Diameter 0.6 in. 

Modulus of elasticity 28,300 ksi 

Min. breaking strength 60.266 kip 

Min. yield strength 53.973 kip 

Nominal area 0.2204 in2

 

3.1 TEST SETUP 

The uniaxial tests were performed in three phases and the test setup was different 

in each phase.  In the first phase, an MTS load frame was used.  Details of these tests are 

summarized in Section 3.1.1. An SATEC load frame was used in the second phase of 

tests, and details are presented in Section 3.1.2.  A steel frame with a hydraulic ram was 

used in the third phase.  The configuration of these tests is discussed in Section 3.1.3. 

3.1.1 Phase 1 

The 220-kip MTS load frame (model 311.31) was used for the first phase of 

uniaxial tests (Figure 3.1). Hydraulic grips were located in the top and bottom cross heads. 

The load frame was operated using PC-based software (MTS Flex TestTM Manager, 

version 3.50). 

Aluminum blocks with six copper wires (Heller 2003) were used to grip the strand 

for the uniaxial tests (Figure 3.2). Two 8-in., smooth, aluminum blocks surrounded the 

copper wires and the strand at each end, and the assembled blocks were clamped in the 

cross heads.  This method held the strand in the elastic range but the strand tended to slip 

before the specimen reached its tensile capacity.  As a result, the aluminum blocks were 

not used in the later phases of the investigation.  

 

 



 

 

MTS Load Frame

Specimen 
DAQ System

Controller

Figure 3.1 Load Frame for First Series of Strand Tests 

 

 

(a) Copper wires (b) Assembly of aluminum blocks 

Figure 3.2 Aluminum Block for Strand Grip 
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3.1.2 Phase 2 

A 600-kip SATEC uniaxial test machine (model 600HVL) was used for the 

second series of tests (Figure 3.3).  This testing machine has three cross heads and the top 

and bottom cross heads are linked rigidly. 

   

 

600-kip load frame

Specimen 

DAQ system Controller

Figure 3.3 Load Frame for Second Series of Strand Tests 

 

Steel plates with a 5/8-in. diameter hole were positioned above the top and below 

the middle cross heads. The plates supported the mono strand anchors (Hayes Industries, 

Model F 5600), which were used to grip the strand (Figure 3.4). The details of the steel 

plates and the anchor heads are presented in Appendix A.  
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Figure 3.4 Anchor below Middle Cross Head in Second Series of Tests 

 

The relative displacement between the top and middle cross heads was monitored 

using a linear potentiometer (Figure 3.5) which was located on the floor and measured the 

vertical displacement of the bottom cross head. The recorded displacement was 

equivalent to the relative displacement between the top and middle cross heads because 

the bottom and top cross heads are linked rigidly and the specimen was loaded by moving 

the top cross head only.  

  

 
Figure 3.5 Linear Potentiometer Used to Measure Relative 

Displacement between Cross Heads 

 

 

37



3.1.3 Phase 3 

In phase 3, the strands were tested in an assembly comprising four steel plates 

supported by four posts (Figure 3.6). Each plate had a 1.5-in. diameter hole at the center 

to accommodate the strand and the posts were welded to the plates. The test frame 

consisted of two parts. A 60-kip hydraulic ram was positioned in the upper frame where a 

3-in. thick circular plate was located to distribute stress evenly. The specimens were 

positioned in the lower frame, which accommodated a specimen free length of 50 in. The 

specimen was gripped using the mono strand anchors used in Phase 2 at each end. 

 

 

 

6'
 2

~5
"

Hydraulic ram

4'
 2

"

Strand

Anchor barrel

Circular plate

Anchor barrel

 

Hydraulic 
ram 

Specimen

(a) Overview (b) Layout 

Figure 3.6 Test Setup Used in Phase 3 
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3.2 PREPARATION OF DAMAGED SPECIMENS 

Damage of the strand was simulated using two methods: uniform corrosion on the 

surface of the strand and mechanical damage to individual wires. These techniques are 

discussed below.  

3.2.1 Uniformly Corroded Strands  

A saltwater solution was used to induce corrosion on the surface of the strand. 

Six-ft lengths of strands were stored outside the Ferguson Structural Engineering 

Laboratory. On days when the surface of the strand was dry, a 3% solution by weight of 

sodium chloride was sprayed on the strand twice daily. If the strands were wet due to rain 

or high atmospheric humidity, saltwater was not sprayed on the surface.  

The exposure test began on February 16, 2006. The first group of specimens was 

moved inside after two months, the second group were moved inside after four months, 

and the last group was moved inside on July 28, 2006 after 5.5 months of exposure. Once 

inside, the specimens were stored in an air-conditioned area within the laboratory and not 

exposed to moisture. The tests of all corroded strands were conducted in August 2006. 

The uniformly corroded specimens were intended to provide information about 

how the structural properties were influenced by corrosion products and the 

corresponding reduction of cross-sectional area. Photographs of the test specimens and 

companion 6-in. specimens, which were exposed to the same environmental conditions, 

are shown in Figure 3.7. 

 



 
(a) Specimens on February 16, 2006 

 

(b) Specimens after first month exposed to salt water 

Figure 3.7 Uniformly-Corroded Specimens 
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3.2.2 Estimated Weight Loss 

A series of 6-in. sections of strand were also corroded by spraying the surface 

with salt water. These specimens were used to estimate the percentage of steel lost due to 

corrosion.  

The ends of the specimens were restrained with tape and zip ties to protect  the 

wires from unraveling (Figure 3.8) and a transparent plastic sealant was used to protect 

the ends of the wires from corrosion. The weight of each specimen was recorded before 

the exposure tests were started and at the end of the exposure tests.  

 

 
Figure 3.8 Specimen Preparation  

Before weighing the specimens, the corrosion products were removed using the 

chemical cleaning procedures described in ASTM G1-03 C.3.5 (2003), which are 

summarized in Table 3.3. The specimens were submerged in a 37.2% hydrochloric acid 

(SafeCote®, A114S-212). Due to the complex geometry of the strand, two modifications 

were made to the ASTM G1 procedures:  
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(1) Corrosion products were removed from the surface of the strand using a brass, 

wire brush before soaking in the acid. 

(2) Specimens were submerged for 20 min, as the recommended interval of 10 min 

was insufficient to remove the corrosion. 

 

Table 3.3 Chemical Cleaning Procedures in ASTM G1 (2003) 
Designation Material Solution Time Remark 

C.3.5 Iron and Steel 
500 ml hydrochloric 
acid (HCl sp gr 1.19) 

10 min 
Longer time maybe required 

in certain instances 

 

The final procedures are summarized below and photographs of the specimens are 

shown in Figure 3.9. 

• Remove cable ties from ends of specimens 

• Remove corrosion products from surface of strand using brass wire brush 

• Submerge specimen in the hydrochloric acid for 20 minutes 

• Rinse specimen with distilled water 

• Rebrush if necessary 

• Evaporate remaining water using heat gun 

• Measure weight of specimen using electric balance 

 



 

(a) Specimens after 2 mo exposure (b) After cleaning with wire brush 

20 min 15 min 

5 min 10 min 

(c) Acid immersion (d) After acid immersion of 20 min 

Figure 3.9 Procedures Used to Remove Corrosion Products 

 

3.2.3 Mechanically Damaged Strands 

The reduction of cross-sectional area caused by completely corroded or fractured 

wires was simulated by cutting one or two wires before testing. Different techniques were 

used to cut the wires in Phase 2 and Phase 3. In Phase 2, the wires were cut completely 

before the tensile loads were applied.  In Phase 3, a nick was formed in a single wire, but 

the damaged wire was still intact at the beginning of the tension test. 
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In order to avoid damaging adjacent wires when cutting wires in Phase 2, the 

specimens were supported in a vise and vise grips were used to unravel all outer wires 

along approximately one-half the length (Figure 3.10). A small steel plate was wedged 

between wires and the strand was retightened. A grinder was used to cut the desired 

number of wires, and then the steel plate was removed.  

 

 
Figure 3.10 Simulation of Broken Wires in Phase 2 

 

In phase 3, a portion of a single wire was cut, but the wires were not unraveled 

before grinding the wire.  The cut was sufficiently small that the adjacent wires were not 

damaged. 

As shown in Figure 3.11, four different cross sections were tested: undamaged 

(zero cut wires), type 1 (one cut wire), type 2 (two cut wires), and type 3 (one partially 

cut wire). Type 1 and 2 represented the possible reduction of cross-sectional area due to 

extensive corrosion damage.  Specimens with these types of damage were tested during 

Phase 2.  Type 3 specimens were selected to measure the stress redistribution caused by a 

wire fracture, and were tested during Phase 3.  
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Undamaged Type 1 Type 2

 Cut wire

Type 3

 
Figure 3.11 Cross Sections Tested in Phases 2 and 3 

 

3.3 PHASE 1 TESTS 

The tests in the first phase are described in Bean (2006) and were used to 

characterize the mechanical properties of the strand used to construct the cable specimens.  

The test specimens were subjected to two cycles of loading to a maximum of 30 kip in 

load increments of 2 kip. Data measured during the second loading cycle are plotted in 

this section.  

3.3.1 Elastic Modulus 

The elastic modulus of specimens, UND 1 through UND 3 was determined from 

the measured axial load and axial displacement of the strand.  Axial displacements were 

measured using the apparatus designed by Heller (2003). Two aluminum blocks were 

attached to the strand with a gage length of 24 in. Two displacement transducers with a 

range of ± 0.05 in. were threaded into a third aluminum block which was not attached to 

the strand, but was connected to the top block by two unstressed rods. The transducers 

measured the relative displacement between the two blocks attached to the strand (Figure 

3.12).  

The stress in the specimen was calculated by dividing the measured load by the 

area of the strand reported on the mill certificate (Table 3.2). The axial strain in the strand 

was calculated by dividing the average displacement from the two transducers by the 

gage length of 24 in.  
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Gage  
length 

Strain gages 

(b) LVDTs 

 
(a) Overall (c) Strain gages 

Figure 3.12 Instrumentation Used to Measure Elongation 
and Strain in Phase 1 

 

Test results are summarized in Table 3.4 and displayed in Figure 3.13 through 

Figure 3.15. The elastic modulus was determined using a least-squares fit to the data. The 

measured displacements varied linearly with the applied load.  

 

 

 

46



 
 

Table 3.4 Elastic Modulus of Strand 

 Modulus of Elasticity (ksi)

UND 1 29,500 

UND 2 29,100 

UND 3 29,500 

Average 29,400 
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Figure 3.13 Stress-Strain Relationship for UND 1 
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Figure 3.14 Stress-Strain Relationship for UND 2  
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Figure 3.15 Stress-Strain Relationship for UND 3 
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3.3.2 Apparent Modulus of Elasticity 

For the 0.6-in. diameter strand used in this investigation, the longitudinal axes of 

the outer wires were rotated approximately 10º from the longitudinal axis of the strand 

(Figure 3.16).  The strain gages were attached to the outer wires of the strand and aligned 

along the axis of the individual wires (Figure 3.12c, Figure 3.17).  The number of strain 

gages varied from six for specimen UND 1 to two for specimen UND 2. The results are 

summarized in Table 3.5 and measured data are plotted in Figure 3.18 through Figure 

3.20. 

 

 

Section A-A' Inner wire

Outer wire

A' 

A≈10°

Figure 3.16 Geometry of Strand Specimen 

 

 

 
Figure 3.17 Strain Gages Positioned along Longitudinal Axes of Wires 
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Table 3.5 Apparent Modulus of Elasticity of Strand 

Strand Gage
Apparent Modulus 

of Elasticity (ksi) 
1 31,030 

2 30,950 

3 29,500 

4 30,480 

5 30,880  

UND 1

6 31,380 

1 32,020 
UND 2

2 30,570 

1 31,140 

2 30,500 UND 3

3 30,430 

Average 30,800 
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Figure 3.18 Apparent Stress-Strain Relationship for UND 1 
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Figure 3.19 Apparent Stress-Strain Relationship for UND 2 
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Figure 3.20 Apparent Stress-Strain Relationship for UND 3 
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Based on the test results from specimens UND 1 to UND 3, the modulus of 

elasticity was determined to be 29,400 ksi and the apparent modulus of elasticity was 

determined to be 30,800 ksi. The apparent modulus is approximately 5% larger than the 

modulus of elasticity, which indicates that higher stresses are likely to develop in outer 

wires of the strand than in an idealized solid bar at the same axial elongation.  

Heller (2003) measured the elastic modulus and apparent modulus for twelve, 4-ft 

long sections of 0.5-in. diameter strands.  He reported averaged values of 31,200 ksi for 

apparent modulus and 29,400 ksi for elastic modulus. 

3.4 PHASE 2 TESTS 

Unlike the tests in Phase 1, where hydraulic pressure was used to grip the 

specimens, which could be released without damaging the specimens, the anchors used in 

Phase 2 could not be released. Therefore, most of specimens in Phase 2 were tested to 

failure.  
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Figure 3.21 Representative Load and Displacement Relationship in Test Series 2 
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A representative load-displacement curve recorded by the linear potentiometer is 

shown in Figure 3.21. The specimens were typically subjected to four loading cycles. The 

maximum loads were 10 kip, 20 kip, and 40 kip in the first, second, and third cycles, 

respectively. The load was increased to the failure load in the fourth cycle. In most tests, 

the specimen was unloaded after the first wire fractured. The remaining wires were then 

cut, and the specimen was removed from the load frame.  

Multiple loading cycles were used to minimize the influence of slip of the 

specimen at the anchors. The strand was gripped at each end by the anchor barrels, but 

initially the wedges were not completely seated. The wedges were pulled into the 

cylinder as the applied load increased. As a result, the recorded displacement from the 

linear potentiometer included this slip of the anchor.  

The wedges typically cracked before the specimen failed (Figure 3.22). Due to the 

slip of the anchors, the recorded data from the linear potentiometer were not used to 

calculate the elastic modulus but were used to monitor the overall behavior of the test 

specimens.   

 

 

(a) Before test (b) After completion of test 

Figure 3.22 Slip of Strand at Anchors 
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The wire breaks typically occurred within the bottom barrel anchor. After the 

specimen yielded, one of the six outer wires fractured and then the applied axial load 

dropped due to slip of the specimen. The fractured surface was typically oriented 

approximately 45° from the longitudinal axis of the wire (Figure 3.23). This surface 

indicates that the fracture was influenced by shear stress, which probably developed due 

to friction between the wedges and the strand.   

 

(a) Outside of barrel (b) Insides of barrel 

Figure 3.23 First Wire Fracture 

 

The axial elongation of the strand was measured using the apparatus discussed in 

Section 3.3.1.  In phase 2, however, the apparatus was modified by adding adjustable 

screws to the middle aluminum block to permit easier adjustment of the transducers 

(Figure 3.24).  At the beginning of the test, the apparatus was attached to the strand 

without the transducers.  The transducers were installed before the fourth loading cycle 

and were removed before the specimen yielded to prevent possible damage caused by the 

wire fracture. In general, the elongation of the strands was measured in the range of 10 to 

30 kip.  
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Adjustable screw

(a) Apparatus for supporting displacement 
transducer (b) Adjustable screws 

Figure 3.24 Instrumentation Used to Measure Elongation of Strand in Phase 2 

 

As in the phase 1 tests, the strain distribution in the outer wires was measured 

using strain gages. The axes of the gages were aligned along the longitudinal axes of the 

outer wires (Figure 3.25). The position and number of gages varied with the specimen.  

Most of gages malfunctioned after the first wire fractured.  

 

 
Figure 3.25 Strain Gages in Phase 2 
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3.4.1 Tensile Strength 

The measured tensile strengths of the specimens tested in Phase 2 are plotted in 

Figure 3.26 and summarized in Table 3.6. Due to stress concentrations at the ends of the 

specimens, the measured tensile strengths did not satisfy the minimum requirement in 

ASTM A 416. However, measured tensile strengths of the undamaged strands were 

within 1 to 3 kip of the ASTM limit.  
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Figure 3.26 Measured Tensile Strength of Strands 

 

Table 3.6Tensile Strength of Specimens Tested in Phase 2 (kip) 

ASTM UND4 UND5 COR3 COR4 COR5 COR6 CUT1 CUT2 CUT3 CUT4 

58.6 57.7 55.6 56.2 57.1 56.9 57.2 51.6 49.5 36.5 41.3 
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The measured tensile strengths of the specimens were essentially proportional to 

the net cross-sectional area. The tensile strengths of corroded specimens were nearly 

identical to those of undamaged specimens. The tensile strengths of specimens with 

broken wires decreased as the number of broken wire increased. Specimens CUT 1 and 

CUT 2 failed at approximately 6/7 the breaking strength of the UND specimens. Also, 

specimen CUT 3 and CUT 4 failed at approximately 5/7 the breaking strength of the 

UND specimens. For specimens CUT 3 and CUT 4, the two cut wires unraveled before 

the specimen failed.  

The CUT specimens unraveled violently after the wire fracture (Figure 3.27). Cut 

wire(s) separated from other wires along the full length of the specimen such that the 

initial geometry of strand was not maintained.  

 

  

(a) Failure of CUT 1 (b) Failure of CUT 3 

Figure 3.27 Failure of Strand with Cut Wire(s) 
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3.4.2 Response of Corroded Strand  

3.4.2.1 Estimated Weight Loss  

As discussed in Section 3.3.2, 6-in. sections of strands were used to estimate the 

percent weight loss due to corrosion. After the first 2-month exposure period, tests were 

conducted to determine the appropriate procedures for removing corrosion products. A 

20-min immersion period was selected and used in all subsequent tests.  

Corrosion products were observed in the first week of the accelerated corrosion 

tests. The corrosion products were colored bright red-brown at the beginning. With time, 

the color of the products changed to dark-brown.  

In spite of the visual evidence of corrosion damage, the maximum percentage of 

weight loss during the 5.5-month exposure was only 3.5%. Furthermore, estimated results 

indicated that amount of the corrosion did not increase between 4 months and 5.5 months. 

It is likely that accumulated corrosion products on the surface of the specimens 

interrupted the reaction between chloride ions and the steel. When corrosion products 

were removed by chemical cleaning procedure, mild pitting was evenly distributed on the 

surface. The test results are summarized in Table 3.7 and displayed in Figure 3.28.  
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Table 3.7 Estimated Weight Loss due to Corrosion 

Weight (g) 
Specimen 
number 

Exposure 
period 

(month) Initial 
After 

immersion 
in acid 

Weight

loss 

Percentage 

(%) 
Average  

(%) 

Immersion 
Time 

(min) 

1 168.5 166.8 1.7 1.0 ― 10 

2 169.9 168.1 1.8 1.1 ― 10 

3 171.2 167.6 3.6 2.1 ― 15 

4 168.9 165.8 3.1 1.8 ― 15 

5 171.6 167.7 3.9 2.3 20 

6 169.9 165.6 4.3 2.5 20 

7 

2 

168.9 164.7 4.2 2.5 

2.4 

20 

8 171.6 166.0 5.6 3.3 20 

9 168.1 162.4 5.7 3.4 20 

10 170.4 164.9 5.5 3.2 20 

11 169.3 163.8 5.5 3.2 20 

12 

4 

171.7 166.9 4.8 2.8 

3.2 

20 

13 172.1 166.5 5.6 3.3 20 

14 170.9 165.9 5.0 2.9 20 

15 170.5 165.8 4.7 2.8 20 

16 168.0 162.6 5.4 3.2 20 

17 

5.5 

168.6 163.8 4.8 2.8 

3.0 

20 

 

 



(a) 2-month exposure (b) 4-month exposure 

  

(c) 5.5-month exposure (d) After cleaning 

Figure 3.28 Observed Corrosion on Surface of 6-in. Specimens 
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3.4.2.2 Elastic Modulus  

The elastic modulus was measured for all corroded specimens. Corrosion products 

were visible on the surface of all specimens (Figure 3.29). The values of elastic modulus 

calculated from the measured stress-strain response are reported in Table 3.8. The applied 

stress was calculated using the cross-sectional area of the strand reported on the mill 

certificates, and no adjustment was made to reflect the 1 to 3% weight loss.  The moduli 

for the corroded specimens ranged from 27,600 to 28,200 ksi, which were approximately 

5% less than the modulus of undamaged specimens.  

 

 
(a) Initial stage 

 

(b) After 2 months 

 

(c) After 4 months 

 
(d) After 5.5 months 

Figure 3.29 Surface Conditions for Corroded Specimens 
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Table 3.8 Measured Elastic Modulus of COR Specimens  

Specimen Elastic Modulus (ksi) ECOR / EUND

COR 1 27,900  

COR 2 28,100  

Average 28,000 0.952 

COR 3 27,600  

COR 4 28,200  

Average 27,900 0.949 

COR 5 27,700  

COR 6 27,600  

Average 27,700 0.942 

 

The differences between the moduli of the corroded specimens and the 

undamaged specimens may be attributed to two sources:  the reduction in area of the 

wires and an increase in friction among wires due to the surface corrosion.  However, the 

differences were small, and the instrumentation used to measure the response of the 

specimens may not have had sufficient precision to detect these changes.  For example, 

the apparatus that was used to measure strains was attached to the strand using several 

screws.  Minor pitting of the surface of the strand due to corrosion could have introduced 

systemic errors in these measurements.  Therefore, the differences between the moduli of 

the two sets of strand were considered to be insignificant. 

The recorded stress-strain relationships for the COR specimens are shown in 

Figure 3.30.  Linear variations between stress and strain were observed in all cases. 
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(b) COR 2 (a) COR 1 
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(c) COR 3 (d) COR 4 
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(e) COR 5 (f) COR 6 

Figure 3.30 Longitudinal Stress-Strain Relationship for COR Specimens 
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3.4.2.3 Apparent Modulus of Elasticity 

Three strain gages were attached to the exterior wires at the midspan of each COR 

specimen (Figure 3.31). The elongation response of COR 4 is considered to be 

representative of all corroded specimens and is similar to that observed during phase 1 

(Figure 3.32).  Initially, the strains increased linearly with the applied load, and large 

inelastic deformations were observed after the specimen yielded. The calculated apparent 

modulus values in the elastic range of response are summarized in Table 3.9 and recorded 

stress-strain relationships for each specimen are presented in Figure 3.33.  

The values of apparent modulus for specimens COR 1 through COR 6 ranged 

from 29,100 to 30,000 ksi, which are 3 to 6 % less than the average value of apparent 

modulus determined for the undamaged strands.  As before, these differences were 

considered to be minor and possibly attributable to instrumentation.  For example, the 

roughness of the surface of the corroded strand can influence the response of the strain 

gages (Figure 3.31). 



 
Figure 3.31 Strain Gages Attached to Corroded Strand 
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Figure 3.32 Representative Apparent Stress-Strain Relationship (COR 4) 
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(c) COR 3 (d) COR 4 
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Figure 3.33 Apparent Stress-Strain Response of Outer Wires (COR Specimens) 
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Table 3.9 Apparent Modulus of Elasticity of Corroded Strand 

 Apparent Modulus (ksi) ECOR / EUND

COR 1 30,000  

COR 2 29,900  

Average 30,000 0.974 

COR 3 30,000  

COR 4 29,100  

Average 29,600 0.961 

COR 5 29,400  

COR 6 30,000  

Average 29,700 0.964 

 

Many of the strain gages malfunctioned when the first wire fractured but a few 

remained operational. The strains from these gages revealed that the strains in the outer 

wires varied linearly with the applied load after the first wire fractured, but the modulus 

was reduced by 20 to 35 %. These trends indicate that the strand behaves in the elastic 

manner after few wire fractures, which suggests the loss of prestressing due to the wire 

fracture may be not significant if the remaining axial capacity of the strand exceeds the 

level of applied prestressing. The apparent moduli determined from the gages that 

survived are summarized in Table 3.10. Ei refers to the initial apparent modulus before 

the wire fracture and Ed refers to the apparent modulus after the wire fracture.  



Table 3.10 Change in Apparent Modulus after First Wire Fractured 

Apparent Modulus (ksi) 
Specimen Strain gage 

Ei Ed

Ei / Ed

COR 3 1 29,000 23,000 0.79 

1 29,000 20,000 0.69 
COR 4 

2 28,000 22,000 0.79 

COR 5 1 28,000 20,000 0.71 

 

3.4.3 Response of Strand with Cut Wire(s) 

3.4.3.1 Stress Distribution within Strand 

One wire in specimen CUT 2 was cut at midheight before the specimen was tested. 

The objective of this test was to determine the distribution of stress among the wires and 

the residual axial capacity of the strand. A total of six strain gages were attached to the 

specimens. Three strain gages were positioned at midspan where the wire had been cut, 

and the other three strain gages were positioned 2 ft from midspan. The arrangement of 

the strain gages is shown in Figure 3.34. The specimen was loaded to failure and the 

recorded data are presented in Figure 3.35. 
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Figure 3.34  Arrangement of Strain Gages for Specimen CUT 2 
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(a) Stress distribution at midspan 
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(b) Stress distribution 2 ft from midspan 

Figure 3.35 Strain Response of Specimen CUT 2 

Table 3.11 Apparent Modulus of Outer Wires for Specimen CUT 2 
Location Strain gage Apparent Modulus (ksi) 

Gage 1 22,700 
At midspan 

Gage 3 22,900 

Gage 4 23,800 
2 ft from midspan 

Gage 6 23,300 
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Test results indicated the cut wire had partially recovered its ability to carry 

tensile stress 2 ft from the location of the cut. Tensile stress was transferred into the cut 

wire by friction from the intact wires.  Immediately adjacent to the cut, the cut wire 

experienced small compressive (negative) strains.  Both observations suggest that the 

spiral configuration of the seven-wire strand influenced the response of the strand. 

The apparent modulus of the unbroken wires in specimen CUT 2 ranged from 

22,700 ksi at midspan to 23,800 ksi a distance 2 ft from midspan, which are less than the 

average value of 30,800 ksi reported for undamaged strand (Table 3.11). The values of 

apparent modulus recorded 2 ft from midspan were slightly higher than those recorded at 

midspan, indicating that larger strains occurred in the continuous wires at midspan than 

2 ft from midspan for a given level of axial load.  

Test results indicate that tensile stresses in the strand redistribute among the 

continuous wires when a wire fractures. Also, friction between the wires has a significant 

influence on the tensile behavior. After the redistribution of stresses, the continuous wires 

exhibited elastic response in the CUT specimens.  It should be noted, however, that the 

applied load was less than the level required to yield the continuous wires in these tests. 

The influence of friction is expected to be greater in strand that has experienced 

corrosion damage than observed in the CUT specimens. The corrosion products increase 

the volume of the individual wires and roughen the outer surface of the wires, thereby 

increasing the internal friction among wires. This trend was expected for the COR 

specimens; however, the extent of corrosion was not sufficient to observe the expected 

response. 

3.4.3.2 Elastic Modulus  

The elastic modulus of strands was determined from the longitudinal response of 

specimens CUT 2 (1 wire cut) and CUT 4 (2 wires cut). During the tests, the gap between 

the two discontinuous ends of the cut wire opened appreciably (Figure 3.36). After the 



first loading cycle, this gap remained opened when the axial load was released. The gap 

between wire breaks was approximately 1.5 in. at the failure load.  

As discussed previously, the apparatus used to measure axial elongation (Figure 

3.24) was attached to the specimen using two screws. For the undamaged strand 

specimens, this method was effective because the stress and strain were uniformly 

distributed among the outer wires. Therefore, the position of the apparatus was not 

critical for the elongation measurement. However, for the specimens with cut wires, the 

stress was less in the cut wires. In addition, the cut wires moved relative to the other 

wires at midspan. Therefore, the location of the apparatus and placement of the screws 

influenced the recorded response. 

 

(a) CUT 2 (b) CUT 4 

Figure 3.36 Opening of Gap between Cut Wires 
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The recorded relationships between applied load and strain for specimens CUT 2 

and CUT 4 are shown in Figure 3.37 and summarized in Table 3.12. The stress-strain 

relationship for CUT 2 exhibited an elastic trend and the response between loading and 

unloading was identical. However, the axial stress-strain relationship for CUT 4 exhibited 

nonlinear trends. The relative movement of two broken wires to unbroken wires was 

significant such that the screws used to attach the apparatus to the specimen were 

influenced. Therefore, the measurement for CUT 4 was not considered to be repeatable.  
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(a) CUT 2 (b) CUT 4 

Figure 3.37 Stress-Strain Relationship 

 

Table 3.12 Elastic Modulus for Specimens with Cut Wire(s) 
 Elastic Modulus (ksi) 

CUT 2 24,000 

― CUT 4 

 

3.5 PHASE 3 TESTS 

Four, 7-ft long, single strand specimens were tested to investigate the stress 

redistribution after a wire fractures. One of six outer wires had been partially cut using a 

grinder before the tests and this damaged wire failed during the test. The failure typically 

occurred at an axial load between 32 and 36 kip. After the fracture, the applied axial load 

dropped by 4 to 6 kip. The axial load was then increased to a maximum of 40 kip and 

released.  

Eight strain gages were attached to each strand along the free length of the 

specimen (Figure 3.38). The location of the initial damage and the arrangement of strain 

gages are shown in Figure 3.39. 
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The sudden release of energy caused by fracture of the damaged wire in DEF 1 

and DEF 2 caused the wires to unravel (Figure 3.40). The broken wire separated from the 

other six wires in the strand and broke the lead wires attached to all the strain gages 

positioned near the initial defect. In subsequent tests, metal hose clamps were positioned 

along the free length at a 2-in. spacing. The clamps prevented the broken wire from 

unraveling and simulated the restraint provided by the grout in external tendons. All the 

strain gages, except the gage attached the wire with the initial defect, survived the first 

wire fracture for specimens DEF 3 and DEF 4.  

 

 

Initial defect 

Figure 3.38 Strain Gages in Phase 3 
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Figure 3.39 Configuration of Specimens Tested in Phase 3 

 

 
(a) DEF 1 (b) DEF 2 (c)  DEF 3 

Figure 3.40 Specimens after Initial Wire Fracture 
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Representative strain response is shown in Figure 3.41. In specimen DEF 3, four 

strain gages were positioned at the location of the initial defect and four additional strain 

gages were positioned 3 ft below the initial defect. At the location of the initial defect, the 

damaged wire experienced less strain (gage 1) than the adjacent wires at a given level of 

applied load. Immediately before failure, the strain level started to drop in this wire.  

Before the damaged wire failed, strains were evenly distributed among the undamaged 

outer wires. However, the strains redistributed after the damaged wire fractured. Strains 

in adjacent wires (gages 2 and 4) increased after the damaged wire fractured, but the 

strain in the opposite wire (gage 3) decreased. As the applied load was increased, the 

wires adjacent to the damage wire exhibited inelastic response, while the wire on the 

opposite side of the strand exhibited elastic response.  

The defect did not influence the initial distribution of strain 3 ft from the location 

of the initial defect – strains were uniformly distributed among the damaged and 

undamaged wires before the first wire fractured. However, after the damaged wire 

fractured, the distribution of strains was similar to that observed at the location of the 

initial defect. Strains in the adjacent wires (gages 6 and 8) increased after the damaged 

wire fractured while the strain in the opposite wire (gage 7) decreased. Recorded strains 

from all DEF specimens are presented in Appendix B.  
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(a) Stress distribution at midspan 
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(b) Stress distribution 3 ft from midspan 

Figure 3.41  Measured Strain Response of Specimen DEF 3 

The values of apparent modulus measured from the outer wires before the wire 

fractured are summarized in Table 3.13. The values were not the same for strains 

measured along the same wire. The variation at each location was approximately ± 10% 

from the average, but no specific trends were identified.  
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Table 3.13 Apparent Modulus of DEF Specimens before Wire Fracture 

Specimen Gage Apparent  
Modulus (ksi) Gage Apparent  

Modulus (ksi) 

1 - 5 32,000 

2 32,000 6 34,800 
3 34,600 7 30,700 

DEF 1 

4 31,300 8 31,500 

1 - 5 31,600 

2 30,800 6 32,000 
3 33,600 7 32,000 

DEF 2 

4 31,900 8 31,000 

1 - 5 33,000 
2 31,200 6 32,100 
3 32,800 7 30,700 

DEF 3 

4 30,700 8 31,600 

1 - 7 31,900 
2 31,500 8 31,300 

3 30,900 9 30,900 
4 30,900 10 31,300 
5 30,800 11 30,900 

DEF 4 

6 31,500 12 31,600 

 

3.6 SUMMARY 

Nineteen 0.6-in. diameter strands were tested to investigate the variation of axial 

response at different levels of damage. Test results are summarized in Table 3.14.  The 

elastic modulus and apparent modulus values for the strand were determined from the 

uniaxial response of three undamaged specimens. The average elastic modulus of strand 

was 29,400 ksi and the average apparent modulus was 30,800 ksi. The apparent modulus 

was higher than the elastic modulus by approximately 5%.  
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Table 3.14 Average Test Results 

Specimens Damage Type 
Breaking 
Strength 

(kip) 

Elastic Modulus 
(ksi) 

Apparent 
Modulus 

(ksi) 
UND 1 to 5 None 56.7 29,400 30,800 

CUT 1,2 1 broken wire 50.6 24,000 23,500* 

CUT 3,4 2 broken wires 38.9 - - 

COR 1,2 2-month exposure - 28,700 30,700 

COR 3,4 4-month exposure 56.7 28,800 30,500 

COR 5,6 5.5-month exposure 57.1 28,500 30,600 

DEF 1 to 4 1 wire w/ initial defect - - 31,800** 

* evaluated 2 ft from location of cut wire 

** evaluated 3 to 4 ft from location of initial defect 

 

Six specimens with three different levels of corrosion damage were tested. 

Corrosion was induced by prolonged exposure to salt water and corrosion products were 

visible on the surface of the strands. However, no significant variations in the axial 

properties were identified. With respect to the undamaged strand, the tensile strength, the 

elastic modulus and apparent modulus were nearly identical. In spite of significant 

corrosion products, the measured weight loss was about approximately 3%. 

Four specimens with wire break(s) were tested. The broken wires were able to 

resist a portion of the applied load 2 ft from the location of the break. In each test, slip of 

the broken wires relative to the intact portions of the strand was observed. The elastic 

modulus of the strand with one broken wire was determined to be 24,000 ksi which is 

approximately 20% less than that of the undamaged strand. The apparent modulus of 

strand with one broken wire ranged from 22,700 to 23,800 ksi, which is 13 to 16% less 

than that of the undamaged strand. 

Four specimens with an initial defect were tested. The wire with a defect fractured 

during the test.  Before the fracturing, the wire with the defect deformed less than the 

adjacent wires at the location of the initial; but all wires deformed uniformly 3 ft from the 



defect. After the fracture, the stress redistribution among wires caused an increase in 

strain in the adjacent wires, but caused a decrease in strain in the wires on the opposite 

side of strand.   

Based on observations made in this chapter, an idealization of the elongation 

behavior of strand including the first and second wire fractures is shown in Figure 3.42. 

The overall behavior of strand is considered without including stress redistribution among 

wires. This figure suggests that the strand maintains a considerable portion of its original 

tensile strength and stiffness after the first wire fractures. Considering test results, the 

damaged elastic modulus (Ed) is approximately 20% less than the initial elastic modulus 

(Ei). Also, the tensile strength of the strand with one broken wire (T1) is approximately 

6/7 of the tensile strength of undamaged strand (T0).  
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Figure 3.42 Schematic Elongation Behavior of Strand 
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Chapter 4: Fatigue Tests of Two-Strand Stay Cables 

 

Three, 49-ft long stay cable specimens with two 0.6-in. diameter strands were 

constructed and subjected to fatigue loading until a significant loss of stiffness was 

detected. A series of the static and dynamic tests were conducted periodically during the 

fatigue tests to evaluate the condition of each specimen as damage accumulated. The 

specimens were also monitored continuously using acoustic sensors to detect wire breaks. 

In this chapter, the measured response of three cable specimens will be discussed.  

4.1 BACKGROUND 

The test specimens were designed by Bean (2006) to represent simplified stay 

cables.  The specimens were 49 ft long (Figure 4.1).  Two, 0.6-in. diameter strands were 

used to construct each specimen and were stressed to an initial tension of 50% of the 

tensile strength of the strand. The strands were parallel along the entire length and 

anchored in steel anchor heads at the ends of the specimen.  The plastic duct was grouted 

after the strands were tensioned. 

During the fatigue tests, the specimens were loaded transversely at one location 

along the length.  Initially, the actuator was positioned at midspan (Location 1), but the 

actuator was positioned near the quarter-span (Location 2) for most of the cycles. 

 

49'

N S

Actuator Location 2 Actuator Location 1

 
Figure 4.1  Test Setup for Cable Specimens 
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The structural characteristics of a stay cable are similar to those of an external 

tendon in many respects, and therefore, the cable specimens were evaluated in this 

dissertation. The global behavior of both systems is dominated by the applied tensile 

stress. A considerable amount of the external load is carried by the tension in the external 

tendons/stay cables and the preservation of this stress is critical for the durability of the 

overall structure. Both external tendons and stay cables have the similar corrosion 

protection systems. The high strength wires or strands are enclosed in a metal or plastic 

pipe and anchored using hardware. The pipe is usually filled with a cemetitious grout.  

Major differences between the two systems are the ratio of the applied initial 

prestress to the tensile strength of the strand and the typical dimensions of the member. A 

higher factor of safety is used for stay cables, where the initial prestress is limited to 50% 

of the guaranteed ultimate tensile strength (GUTS). In comparison, external tendons are 

often designed to be prestressed between 70 and 80% of GUTS. 

The response of stay cables is complicated by geometric nonlinearities, which are 

caused by the long length relative to the diameter of the cross section.  As a result, large 

deflections are often induced by the self-weight of stay cables. Therefore, small 

displacement theory is not valid for analyzing these cables, and advanced analysis 

techniques must be used to predict the response. However, because external tendons have 

a higher prestressing ratio and a relatively short length with respect to the cross-sectional 

diameter, the initial configuration of the tendon is typically assumed to be straight.   

The test specimens were designed to study fatigue damage of stay cables under 

large-amplitude transverse deflections (Bean 2006). While the specimens were designed 

to simulate the behavior of stay cables, the structural characteristics were similar to those 

of an external tendon because geometric nonlinearities were negligible due to the 

relatively short length. A simple cross section with two parallel strands was also 

advantageous for investigating the distribution of strain along the length. Therefore, the 

cable specimens were considered to be identical to external tendons with a lower than 

normal level of prestressing. The construction process for the cable specimens is 

summarized in Appendix C and the hydraulic loading system is described in Appendix D. 
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4.2 OVERVIEW OF TESTING PROGRAM 

The primary objective of the testing program discussed in this chapter was to 

evaluate the fatigue performance of the cable specimens.  An acoustic sensor system was 

used throughout the fatigue tests to detect wire breaks, which was used as an indication of 

damage within the stay cable.  Periodically, the fatigue tests were stopped to conduct 

more detailed tests:  static tests were conducted to evaluate the transverse stiffness and 

measure the distribution of strain in the strand, and free-vibration tests were conducted to 

determine the first six natural frequencies of the test specimens.  These tests were 

designed to quantify how the structural characteristics of the cable specimens changed as 

damage accumulated. 

The fatigue tests are summarized in Section 4.2.1 and the acoustic sensor system 

is described in Section 4.2.2.  The periodic static tests are discussed in Section 4.2.3 and 

the associated instrumentation is presented in Section 4.2.4.  The free-vibration tests are 

summarized in Section 4.2.5 and the instrumentation and procedures used to determine 

the natural frequencies are discussed in Section 4.2.6. 

4.2.1 Fatigue Tests 

During the fatigue tests, a single transverse load was applied by a hydraulic 

actuator (Figure 4.2).  For specimen Cable 01, the loading frame was initially positioned 

at midspan.  However, the loading frame was moved closer to the north end, as shown in 

Figure 4.2, after approximately 40 days of testing.  This position was used for the 

remainder of the tests. 

In order to maintain the stability of the hydraulic actuator during the fatigue tests, 

the specimens were pulled upward from the initial position.  Initially, the actuator was 

run in load control, but displacement control was used for the majority of the tests.  The 

load applied by the actuator and the displacement of the actuator were monitored 

continuously during the fatigue tests.  Additional details about the fatigue tests are 

available in the thesis by Bean (2006).  
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Figure 4.2 Arrangement of Load Frame, Accelerometers, and Acoustic Sensors 
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4.2.2 Acoustic Sensors 

Four acoustic sensors from Pure Technologies, Inc. (SoundPrintTM system) were 

positioned along the cable specimen to detect wire breaks during the fatigue tests (Figure 

4.2). Two sensors were located on the plastic ducts and the other two sensors were 

located on the anchor head (Figure 4.3). Each sensor was attached to the specimen using 

a cyanoacrylate adhesive and then held in place by a metal clamp. These sensors were 

connected to the SoundPrintTM Watch Dog PS6 System in the Ferguson Structural 

Engineering Laboratory (Figure 4.4).  

When the abrupt energy release caused by a wire fracture was detected by the 

sensors, the DAQ system triggered and captured the signal. These signals were stored on 

a local computer and transferred to Pure Technologies in Calgary once a day via an 

internet connection. Technical staff reviewed all signals, identified the records 

corresponding to wire breaks, and determined the locations of the wire breaks.  Reports 

were available on a project website within two to four days.  

 

(a) Sensor on Pipe (b) Sensor on Anchor Head 

Figure 4.3 Acoustic Sensors Attached to Cable Specimens 
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Figure 4.4 Watch Dog-PS6 (SoundPrint TM) Hardware 

4.2.3 Periodic Static Tests 

The fatigue tests were interrupted periodically to conduct static tests.  As damage 

accumulated, the transverse stiffness of the specimens was expected to decrease.  The 

testing protocols varied slightly for the three specimens, and are summarized briefly 

below. 

Initially, Cable 01 was initially loaded at midspan and the fatigue tests were run 

under force control. During each static test, the specimen was loaded from 0 to 1.4 kip in 

0.2-kip increments. After the load frame was relocated to the north end of the specimen, 

the static tests were discontinued. 

Cable 02 and Cable 03 were loaded near the north end and the fatigue tests were 

run under displacement control.  During each static test, the specimen was pulled upward 

to a maximum displacement of approximately 2.5 in. in 0.4 to 0.6-in. increments.  
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4.2.4 Instrumentation for Static Tests 

The force applied by the actuator and the displacement of the actuator were 

recorded during the static tests.  In addition, strain gages were attached to the outer wires 

of the strand during construction and were recorded during the static tests.  The number 

and location of strain gages varied with each specimen. While strains were measured 

during all the static tests, the strain gages closest to the anchor heads malfunctioned after 

relatively few cycles of fatigue loading. 

4.2.5 Free-Vibration Tests 

After each static test, the natural frequencies of the specimen were measured. The 

collar used to connect the hydraulic actuator to the specimen was removed and the ram 

was disconnected from the test specimen. Vibrations were induced by hitting the 

specimen with a rubber-headed hammer.  During each free-vibration test, the specimen 

was struck at three different locations (Figure 4.5).  

 

8'5'
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11.5'

Position 2Position 3

 
Figure 4.5 Location of Impact for Cable Specimens 

 

4.2.6 Instrumentation for Free-Vibration Tests 

Three accelerometers were attached to each cable specimen to capture the free-

vibration response. The locations of the accelerometers were selected based on the 

calculated mode shapes. The number of natural frequencies that can be detected from the 

free-vibration response depends on the location of the sensors. In order to identify a mode 
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of vibration, an accelerometer must be positioned to capture the large-amplitude response 

of the mode shape. As shown in Figure 4.6, L/6 and L/4 were selected for the locations of 

the sensors, where L is the length of the specimen. Theses locations were sufficient to 

capture the first six modes of response.  
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Figure 4.6 Normalized Mode Shapes for Cable Specimens 

 

Two accelerometers (Figure 4.2) were positioned 8 ft and 13 ft from the north end 

of the specimen and designated Acc 1 and Acc 2, respectively. A third accelerometer, 

Acc 3, was positioned 13 ft from the south end to verify the frequency response. 

Accelerometers were attached to the plastic ducts using hot-melt glue (Figure 4.7). 
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Figure 4.7 Accelerometer Attached to Cable Specimens 

Micro machined accelerometers (model MMA 1220D) from Freescale 

SemiconductorTM were used for the dynamic measurements. The accelerometer had a 

bandwidth of 250 Hz and the DAQ system offered the maximum sampling frequency of 

33,000 kS/sec (equivalent to a bandwidth of 16.5 kHz). Because the capacity of the 

equipment was higher than required to capture the frequency response, the signal was 

oversampled without filtering. Further information regarding the data acquisition system 

and the accelerometer is presented in Appendix E. 

The accelerations measured during the free-vibration tests were converted into the 

frequency domain using the Fast Fourier Transformation (Figure 4.8). The measured 

vibrations indicated the same frequency components regardless of locations of sensor and 

impact; but the relative amplitude of each component varied. Recorded data in the 

frequency domain are presented in Appendix G. 

A resolution of 0.1 Hz was desired in the frequency domain. Therefore, a 

sampling rate of 1,000 Hz was selected in the time domain. Each sampling window was 

10 sec long, providing a record with 10,000 data points for each accelerometer: 

Hz
tN

1.0
001.0000,10

11
=

×
=

Δ
 (Eq.4.1) 

where N = number of samples and Δt = sampling period 
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(b) Frequency domain 

Figure 4.8  Representative Free-Vibration Response 

 89



 90

4.3 MEASURED RESPONSE OF SPECIMENS  

In subsequent sections, the measured response of the three cable specimens is 

summarized. Damage accumulated in the specimens due to the fatigue loading. Static and 

dynamic tests were conducted periodically to observe the changes in structural behavior 

due to wire fractures and cracking of the grout. Once significant damage of the specimen 

was detected, the fatigue test was terminated and the specimen was disassembled to 

determine the extent of damage. The test schedules for the three cable specimens are 

summarized in Appendix H.  

It is important to note that several key aspects of the testing program were not 

ideal. The amplitude and frequency of the displacement cycles were adjusted to 

accelerate fatigue damage for Cable 01 and Cable 02. The load frame was relocated 

during the test of Cable 01. The actuator position corresponding to zero load varied 

slightly during the tests of Cable 02, because the loading actuator was detached from the 

test specimen for each set of frequency measurements. In addition, the static and dynamic 

response of the specimen were not measured after each wire fracture because multiple 

wire breaks often occurred within a short period of time.  

In spite of these limitations, fatigue damage accumulated in the specimen and the 

variation of the structural response in each set of tests did reflect induced damage. The 

acoustic sensors also provided a reasonable estimate of the number of wire breaks during 

the fatigue tests.  

4.4 CABLE 01 

The response of Cable 01 is summarized in this section. The specimen was 

subjected to more than 5 million cycles over 61 days. The testing program for Cable 01 is 

summarized in Table 4.1. The test was terminated after the specimen collapsed due to 

fracture of all 14 wires. 

The cyclic loading was initially applied at midspan in force control. However, this 

arrangement caused lower than expected levels of stress in the strand such that only two 
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wire breaks occurred during the first 40 days of the test. Therefore, the load frame was 

repositioned toward the north end to develop higher stresses as shown in Figure 4.9. At 

the same time, a new LVDT was attached to the actuator, which allowed the test to be 

operated in displacement control. The specimen failed after 13 days of additional cyclic 

loading.  

Table 4.1 Overview of Testing Program for Cable 01 

Configuration 
Date and Time Force 

Control (kip) 
Displacement 
Control (in.) 

Remarks 

9/01/05  3:15 pm 0.8 ± 0.5 at 0.6 Hz  Fatigue test started 

9/12/05 4:30 pm 0.8 ± 0.5 at 1.25 Hz   

9/15/05 3:55 pm 0.8 ± 0.5 at 1.5 Hz   

10/14/05 

Relocated load frame and replaced LVDT 

Changed from force control to displacement control 

10/17/05 12:10 pm  1.5 ± 1.25 at 1.5 Hz Fatigue test restarted 

11/01/05 Specimen failed 

 

The list of periodic measurements for Cable 01 is given in Table 4.2. At the 

beginning, the three types of measurements were performed at the same time. However, 

stain gages malfunctioned as the number of loading cycles increased, and the strain 

measurements were discontinued. The transverse stiffness was only measured before the 

load frame was relocated. While the natural frequencies were measured throughout the 

entire fatigue test, only two measurements were made between the third and sixteenth 

wire breaks. In this 5-day period, 9 of 14 wires fractured. After the test was completed, 

the autopsy was conducted to investigate the condition of the specimen.  

 



 

Table 4.2 Series of Tests for Cable 01 

Measurement Date Transverse 
Stiffness Strains Natural 

Frequency
Wire Breaks

Reported 
0  x x x 0 

1 9/06/05 x x  0 

2 9/16/05 x  x 0 

3 9/27/05 x   0 

4 10/03/05 x   1 

5 10/05/05 x  x 2 

6 10/24/05   x 3 

7 10/27/05   x 8 

 

 

37.5'
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11.5'
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North South

 
Figure 4.9 Positions of Load Frame for Cable 01 

 

4.4.1 Transverse Stiffness 

Transverse stiffness was measured six times for Cable 01. The test results are 

displayed in Figure 4.10 and summarized in  

Table 4.3. Tests are designated “TS X” where “TS” refers to transverse stiffness 

and “X” indicates the test number. TS 0 refers to the stiffness that was measured before 

the start of the fatigue tests. All transverse stiffness tests were conducted when the load 

frame was located at midspan. 
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The load-displacement relationship for Cable 01 was linear. The transverse 

stiffness decreased from 0.41 to 0.39 kip/in. as the number of the loading cycles increased. 

Two wires breaks were reported near midspan in the 47 days between test TS 0 and TS 5. 
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Figure 4.10 Measured Transverse Stiffness of Cable 01 

 

Table 4.3 Summary of Variation in Transverse Stiffness for Cable 01 

Measurement Date Stiffness 
(kip/in.) 

Wire Breaks 
Reported 

TS 0 8/30/05 0.41 0 

TS 1 9/06/05 0.40 0 

TS 2 9/16/05 0.40 0 

TS 3 9/27/05 0.40 0 

TS 4 10/03/05 0.39 1 

TS 5 10/05/05 0.39 2 
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4.4.2 Distribution of Strains  

The first two sets of strain measurements were conducted at the initial stage and 

after the six days of cyclic loading. Tests are designated “SM X” where “SM” refers to 

strain measurements and “X” indicates the test number.  The test schedule for the strain 

distribution measurements are given in Table 4.4. Recorded strains are presented in 

Appendix F.  

 

Table 4.4 Strain Measurements for Cable 01 

Measurement Date Wire Breaks 
Reported 

SM 0 8/30/05 0 

SM 1 9/06/05 0 

 

Ten strain gages were positioned along the specimen, as summarized in Figure 

4.11 and Table 4.5. Four strain gages were attached in the vicinity of each anchor head 

and two strain gages were attached at midspan. The gages were installed along the axes 

of individual wires. The measured strains represent the variation in strain due to the 

applied load and do not include the initial level of prestress. 

 94

~25'

North South

A
nc

ho
r H

ea
d

A
nc

ho
r H

ea
d

~25'1/4" 1/4"

A1
A2
A3
A4

1
2
3
4

A B C

B1

B4

C1
C2
C3
C4

 
Figure 4.11 Locations of Strain Gages for Cable 01 
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Table 4.5 Locations of Strain Gages for Cable 01 

Gage Distance from 
North Anchor Head Gage Distance from 

South Anchor Head 
A1 1/4  in. C1 1/4 in. 

A2 1/4  in. C2 1/4 in. 

A3 1/4  in. C3 3/16 in. 

A4 5/16 in. C4 5/16 in. 

B1 Near center 

B4 Near center 

 

The measured distributions of strains are presented in Figure 4.12. The strains 

exhibited highly nonlinear trends. Loading paths did not coincide with the unloading 

paths. The strain gages positioned the same distance from the anchor heads did not 

exhibit a linear variation of strain with depth. The maximum strain was measured by gage 

A3, 470 με. Using the average apparent modulus of the elasticity discussed in Chapter 3, 

the maximum variation in stress was 14 ksi. Considering that the initial level of prestress 

was 50% of GUTS, the stress was estimated to vary from 135 to 149 ksi at the end of this 

specimen.  
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(a) Strain Measurement 0 
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(b) Strain Measurement 1 

Figure 4.12 Strain Distribution for Cable 01 
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4.4.3 Natural Frequencies 

Natural frequencies were measured five times for Cable 01. Tests were performed 

after the acoustic sensors reported the second, third, and eighth wire breaks. The test 

results are presented in Table 4.6. Tests are designated “NF X” where “NF” refers to 

natural frequency and “X” indicates the test number. NF 0 represents a measurement at 

the initial stage. Three wire breaks were reported between NF 0 and NF 3, and the 

measured frequencies of the second through the sixth modes of vibration decreased 

slightly. During NF 4, significant changes in all six natural frequencies were observed.  

 

Table 4.6 Measured Natural Frequencies for Cable 01 (Hz) 
NF 0 NF 1 NF 2 NF 3 NF 4 Mode of  

Vibration 7/14/05 9/16/05 10/05/05 10/24/05 10/27/05 

1 4.6 4.6 4.6 4.6 4.2 

2 9.4 9.3 9.2 9.1 8.6 

3 14.5 14.3 14.2 14.0 13.2 

4 20.0 19.7 19.5 19.4 18.3 

5 25.6 25.1 24.9 24.5 23.6 

6 32.2 31.7 31.2 30.7 29.7 

Wire breaks reported 0 0 2 3 8 

 

 

4.4.4 Acoustic Sensor Monitoring  

A total of 14 wire breaks were reported by the SoundPrintTM system. The location 

and dates of the wire breaks are reported in Figure 4.13 and summarized in Table 4.7, 

respectively. First two wire breaks were detected near midspan. All other wire breaks 

were detected near the north anchor head.  
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Figure 4.13 Locations of Wire Breaks Reported for Cable 01 

 



 99

Table 4.7 Summary of Wire Breaks Detected by Acoustic Sensors for Cable 01 
Number of 
Wire Break  

Date and Time Estimated Number of 
Loading Cycles 

1 10/03/05 11:42 am 3,106,000 

2 10/04/05 6:10 pm 3,260,000 

3 10/24/05 6:50 pm 4,126,000 

4 10/25/05 1:22 am 4,365,000 

5&6 10/25/05 6:43 pm 4,381,000 

7 10/26/05 6:30 pm 4,431,000 

8 10/26/05 9:56 pm 4,449,000 

9 10/27/05 2:46 pm 4,521,000 

10 10/27/05 4: 36 pm 4,531,000 

11 10/27/05 8:28 pm 4,552,000 

12 10/28/05 1:09 am 4,577,000 

13 10/28/05 3:35 pm 4,595,000 

14 11/01/05 3:15 am 5,044,194 

 

4.4.5 Autopsy of Cable 01 

The specimen was disassembled after the test was completed. The specimen 

collapsed after all the wires fractured (Figure 4.14). The failure occurred near the north 

anchor head. The top strand failed within 2-in. of the outside face of the anchor head and 

the bottom strand failed inside the anchor head. Thirteen wires at this section failed due 

to fatigue, but one wire yielded prior to failure. 

A total of 16 wire breaks were identified during the autopsy. Two adjacent wires 

fractured near midspan and 14 wires fractured near the north anchor head (Figure 4.15). 

Two wire breaks at midspan appeared to occur before the load frame was relocated 

because the number and location of the wire breaks coincided with the SoundPrintTM 

system report.  

 



(a) Overall collapse (b) Separated section 

(c) Collapsed section (toward duct) (d) Collapsed section (toward anchor head) 

Figure 4.14 Specimen Collapse of Cable 01 

Grout at the north end of the specimen was fragmented. The energy generated by 

wire breaks appeared to pulverize the grout. Grout also cracked vertically at many 

sections. The crack developed from the top and bottom of the sections and continued 

through both of strands (Figure 4.15d). The relative movement between strands and grout 

during the cyclic loading probably resulted in compression and tension of the grout and 

caused the vertical crack.  

A total of 16 wire breaks were observed in comparison to the 14 wire breaks 

reported by the acoustic sensors. The first two wire breaks at midspan were detected 

properly, but 2 wire breaks at the north end of the specimen were not detected. The 

transferred energy from wire breaks to the sensors was significant and 14 wire breaks 
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occurred in a narrow region in the vicinity of the anchor head. It is likely that the 

SoundPrintTM system was not able to distinguish between single and simultaneous wire 

fractures. However, the location of the wire fractures identified by the acoustic sensors 

was in general agreement with the observed wire breaks.  

 

  

(a) Anchor head top strand (b) Anchor head bottom strand 

(c) Wire fracture at the midspan (d) Typical section 

Figure 4.15 Wire Breaks and Typical Section for Cable 01 
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4.5 CABLE 02 

The Cable 02 was subjected to 4.9 million loading cycles over 37 days. The 

testing program for Cable 02 is summarized in Table 4.8. The test was terminated after 

the sixth wire break was reported by the acoustic sensors. The cyclic loading was applied 

11.5 ft from the north end of the specimen and operated in displacement control. The 

setpoint for the cyclic loading was increased from 1.52 to 1.96 in. to accelerate the 

fatigue damage but the variation of the setpoint for first 33 days of loading resulted from 

the detachment of the actuator from the specimen. The list of periodic measurements for 

Cable 02 is given in Table 4.9. 

 

Table 4.8 Overview of Testing Program for Cable 02 
Configuration 

Date and Time 
Setpoint (in.) Amplitude (in.) Frequency (Hz) 

2/21/06 12:45 pm 1.52 1.25 1.5 

2/24/06 10:15 am 1.58 1.25 1.5 

3/03/06 10:17 am 1.55 1.25 1.5 

3/06/06 12:57 am 1.42 1.25 1.5 

3/15/06 1:43 pm 1.40 1.25 1.5 

3/21/06 4:20 pm 1.54 1.25 1.5 

3/24/06 10:40 am 1.81 1.25 1.5 

3/27/06 4:20 pm 1.96 1.25 1.5 

3/30/06 12:12 am 1.96 1.25 1.5 

4/01/06 8:20 pm Test terminated 
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Table 4.9 Series of Tests for Cable 02 

Measurement Date and 
Time 

Transverse
Stiffness Strains Natural 

Frequency 
Wire Breaks 

Reported 
0 2/21/06 x x x 0 

1 2/24/06 x  x 0 

2 2/28/06 x x  0 

3 3/03/06 x  x 1 

4 3/06/06 x  x 2 

5 3/15/06 x x x 2 

6 3/21/06 x x x 2 

7 3/24/06 x x x 5 

8 3/27/06 x x x 5 

9 3/30/06 x x x 6 

 

 

4.5.1 Transverse Stiffness  

The transverse stiffness was measured ten times for Cable 02. The test results are 

displayed in Figure 4.16 and summarized in Table 4.10. The load-displacement 

relationships exhibited linear trends. The measured transverse stiffness decreased from 

0.59 to 0.45 kip/in. from TS 0 to TS 9. The reduction between TS 0 and TS 5 was small, 

but increased after TS 6. In particular, the measured stiffness decreased from 0.51 to 0.45 

kip/in. between TS 8 and TS 9.  
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Figure 4.16 Measured Transverse Stiffness of Cable02 

 

Table 4.10 Summary of Variation in Transverse Stiffness for Cable 02 
Measurement Date Stiffness (kip/in.) Wire Breaks Reported 

TS 0 2/21/06 0.59 0 

TS 1 2/24/06 0.58 0 

TS 2 2/28/06 0.59 0 

TS 3 3/03/06 0.57 1 

TS 4 3/06/06 0.57 2 

TS 5 3/15/06 0.56 2 

TS 6 3/21/06 0.54 2 

TS 7 3/24/06 0.52 5 

TS 8 3/27/06 0.51 5 

TS 9 3/30/06 0.45 6 
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4.5.2 Distribution of Strains  

Seven sets of strain measurements were conducted for Cable 02. The schedule is 

given in Table 4.11. A total of 16 strain gages were attached to strands along the length. 

The location of strain gages is displayed in Figure 4.17 and summarized in Table 4.12. 

Recorded strains were presented in Appendix F.  

 

Table 4.11 Strain Measurements for Cable 02 

Measurement Date and 
Time 

Wire Breaks 
Reported 

SM 0 2/21/06 0 

SM 1 2/28/06 0 

SM 2 3/15/06 2 

SM 3 3/21/06 2 

SM 4 3/24/06 5 

SM 5 3/27/06 5 

SM 6 3/30/06 6 

 

The overall strain distribution exhibited highly nonlinear trends at the initial stage. 

The loading path did not coincide with unloading path. As the number of cyclic loading 

increased, the strain distribution gradually became linear. However, the strain gages 

located near the north anchor head malfunctioned after SM 0 (Figure 4.18).   

During SM 0, the maximum variation of 1800 με was recorded in A3 at a 

transverse displacement of 3.0 in. This strain was equivalent to the axial stress of 56 ksi 

in the wire. Considering that the maximum displacement of cyclic loading was 2.8 in. at 

the beginning of the fatigue tests, a similar amount of stress probably developed in the 

bottom strand at the north end.  
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Figure 4.17 Locations of Strain Gage for Cable 02  

 

Table 4.12 Locations of Strain Gages for Cable 02 

Gage Distance from 
North Anchor Head Gage Distance from 

South Anchor Head 
A1 1-1/16 in F1 5 in 

A2 2-1/16 in F4 5 in 

A3 1/2 in G1 1-1/16 in 

A4 1/2  in G4 1/2 in 

B1 6-1/8 in   

B4 5-7/8 in   

C1 12-3/8 in   

C4 12-1/2 in   

D1 ~14 ft   

D4 ~14 ft   

E1 ~15 ft   

E4 ~15 ft   
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Figure 4.18 Strain Distributions for Cable 02 
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4.5.3 Natural Frequencies 

Natural frequencies were measured nine times for Cable 02. The test results are 

presented in Table 4.13. The natural frequencies of all six modes decreased gradually 

from NF 0 to NF 8.  

 

Table 4.13 Measured Natural Frequencies for Cable 02 (Hz) 
NF 0 NF 1 NF 2 NF 3 NF 4 Mode of 

Vibration 2/21/06 2/24/06 3/03/06 3/06/06 3/15/06 

1 4.4 4.4 4.3 4.3 4.3 

2 8.9 8.7 8.7 8.6 8.6 

3 13.6 13.3 13.2 13.2 13.2 

4 18.6 18.3 18.1 18.1 18.1 

5 23.5 23.1 22.9 22.9 22.9 

6 29.6 29.0 28.8 28.9 28.8 

Wire breaks reported 0 0 1 2 2 

 

NF 5 NF 6 NF 7 NF 8 Mode of 
Vibration 3/21/06 3/24/06 3/27/06 3/30/06 

1 4.2 4.1 4.1 3.9 

2 8.5 8.3 8.2 7.9 

3 13.0 12.9 12.8 12.4 

4 18.0 18.0 17.9 17.4 

5 23.0 23.1 23.2 22.6 

6 29.1 29.1 29.2 28.9 

Wire breaks reported 2 5 5 6 

 

 



4.5.4 Acoustic Sensor Monitoring 

A total of six wire breaks were reported by the SoundPrintTM system. Wire breaks 

were concentrated near the north end of the specimen. Reported wire breaks are displayed 

in Figure 4.19 and summarized in Table 4.14.  
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Figure 4.19 Location of Wire Break Report for Cable 02 

 

Table 4.14 Summary of Wire Breaks Detected by Acoustic Sensors for Cable 02 

Wire Break Number Date and Time Estimated Number 
of Cycles 

Test started 2/21/06 12:45 pm 0 

1 3/02/06 12:53 pm 1,125,000 

2 3/03/06 5:32 pm 1,281,000 

3 3/22/06 10:28 am 3,664,000 

4 3/23/06 8:22 am 3,782,000 

5 3/23/06 6:27 pm 3,836,000 

6 3/28/06 5:32  pm 4,458,000 



4.5.5 Autopsy of Cable 02 

The specimen was disassembled to investigate the extent of damage after the test 

was terminated. A total of eight wire breaks were identified along the top strand and no 

wire breaks were observed along the bottom strand. Six wires fractured within 8 in. of the 

outside face of the anchor head and two wires fractured inside the anchor head (Figure 

4.20). The center wire fractured twice. Therefore, the top strand was completely 

separated from the anchor head. Mild corrosion was observed in the region where wires 

fractured. This corrosion indicated that severe abrasion and friction occurred at this 

region.  

 

 

Top strand 

Wire factures 

Figure 4.20 Wire Fractures at North Anchor Head for Cable 02 

 

Grout near  the north end was completely fragmented. Vertical cracks were also 

identified along the entire length as shown in Figure 4.21. The observed condition of the 

grout was similar to Cable 01. 
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(a) North anchor region (b) Typical section 

Figure 4.21 Grout Condition of Cable 02 

A total of eight wire breaks was identified during the autopsy but the 

SoundPrintTM system only reported six wire breaks. Also, while three wire breaks were 

identified about 6 in. from the outer face of the anchor head at the north end, the 

SoundPrintTM system located the three wire breaks 2 to 2.5 ft from the outer face of the 

anchor head. The acoustic sensors appeared to not verify simultaneous wire fractures and 

the second wire break in the center wire could not produce large energy to be detected by 

the sensors. The presence of cracks in the grout could interfere with the signal delivery. 

In conclusion, the location and number of wire break report from the SoundPrintTM 

system was considered to be in general agreement with the findings from the autopsy.  
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4.6 CABLE 03 

The recorded response of Cable 03 is summarized in this section. The specimen 

was subjected to approximately 1.2 million loading cycles over 16 days. The test was 

terminated after the eighth wire break was reported by the SoundPrintTM system. The test 

program is summarized in Table 4.15.  

The strain distribution was intensively investigated at the initial stage. A total of 

32 strain gages were installed and the strains were measured eight times during the first 

135,000 cycles with low-amplitude transverse displacements.  

The cyclic loading was assigned an amplitude of 1.4 in. at a frequency of 1.5 Hz. 

While these parameters were similar to those of previous specimens, numerous wires 

fractured in a relatively short period of time.  

 

Table 4.15 Overview of Testing Program for Cable 03 
Loading Parameters 

Date and Time 
Setpoint (in.) Amplitude (in.) Frequency (Hz) 

4/25/06  1.5 1.4 1.5 

5/09/06 8:35 am Test terminated 

 
The transverse stiffness, strain distribution and natural frequencies were measured 

periodically throughout the test period. The list of periodic measurements for Cable 03 is 

given in Table 4.16. 
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Table 4.16 Series of Tests for Cable 03 

Measurement Date Transverse 
Stiffness Strains Natural 

Frequency
Wire Breaks

Reported 
0 4/16/06   x 0 

1 4/25/06 x x  0 

2 4/26/06  x x  0 

3 4/28/06  x x x 0 

4 5/01/06  x x x 4 

5 5/04/06  x x x 6 

6 5/11/06 x x x 8 

 

4.6.1 Transverse Stiffness 

The transverse stiffness was measured six times for Cable 03 and test results are 

displayed in Figure 4.22 and summarized in Table 4.17. The load-displacement 

relationship exhibited a linear trend. From TS 0 to TS 5, the measured transverse stiffness 

decreased gradually from 0.59 to 0.48 kip/in. In this period, six wire breaks were reported 

by the SoundPrintTM system. The sudden reduction of stiffness was recorded from 0.48 to 

0.37 kip/in. between TS 4 and TS 5.  
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Figure 4.22  Measured Transverse Stiffness for Cable03 

Table 4.17 Summary of Variation in Transverse Stiffness for Cable 03 
Measurement Date Stiffness (kip/in.) Wire Breaks Reported 

TS 0 4/25/06 0.59 0 

TS 1 4/26/06 0.58 0 

TS 2 4/28/06 0.58 0 

TS 3 5/01/06 0.54 4 

TS 4 5/04/06 0.48 6 

TS 5 5/11/06 0.37 8 

 

4.6.2 Strain Distribution Measurement 

The strain distribution along strands for Cable 03 was intensively investigated. A 

total of 32 strain gages were used to monitor the response of the specimen and strains 

were measured eight times at the initial stage. The overall test schedule is summarized in 

Table 4.18 and the test schedule at the initial stage is summarized in Table 4.19. 

Recorded strains were presented in Appendix F. 
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The strains measured in Cable 01 and Cable 02 exhibited nonlinear trends with 

the applied load during the initial series of tests. While these strains were measured 

before the start of the fatigue tests, the grout in the specimens was likely cracked, because 

the research team loaded the specimens while checking the performance of the hydraulic 

system. In contrast, Cable 03 was not preloaded before the first series of strain 

measurements and the amplitude of the applied displacements was low in the early tests 

to minimize the likelihood of cracking the grout.  

 

Table 4.18  Strain Measurements for Cable 03 
Strain 

Measurement Date Wire Breaks 
Reported 

SM 0-0~0-6 4/25/06 0 

SM 1 4/26/06  0 

SM2 4/28/06  0 

SM3 5/01/06  4 

SM4 5/04/06  6 

SM5 5/11/06 8 

Table 4.19  Initial Strain Measurements for Cable 03 

Measurement Maximum Displacement (in.)

SM0-0 0.4 

SM0-1 0.8 

SM0-2 1.2 

1,000 loading cycles 

SM0-3 1.2 

SM0-4 2.0 

1,000 loading cycles 

SM0-5 3.0 

10,000 loading cycles 

SM0-6 3.0 

134,500 loading cycles 

SM1 3.0 



The locations of strain gages are displayed in Figure 4.23 and summarized in 

Table 4.20. Sixteen gages were attached near the north end of the specimen to investigate 

the strain distribution with depth. Four of gages were positioned at locations A through E, 

H and I. Two gages were positioned at locations F and G.  

 
A B E F IH
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Figure 4.23 Locations of Strain Gages for Cable 03 
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Table 4.20 Locations of Strain Gages for Cable 03 

Gage Distance from 
North Anchor Head Gage Distance from 

South Anchor Head 
A1 1-5/8 in G1 14 ft 3 in 

A2 2-1/2 in G4 14 ft 3in 

A3 2-1/8 in H1 13-7/8 in 

A4 2-3/8 in H2 13-5/8 in 

B1 6-1/2 in H3 13-1/8 in 

B2 6-1/2 in H4 12-7/8 in 

B3 6-1/4 in I1 2-1/2 in 

B4 6-5/8 in I2 2 in 

C1 12 in I3 2-7/8 in 

C2 12 in I4 2-1/2 in 

C3 12-1/4 in   

C4 12-1/4 in   

D1 16-3/4 in   

D2 17-5/8 in   

D3 16-3/4 in   

D4 17-1/2 in   

E1 7 ft 1 in   

E2 7 ft 1 in   

E3 7 ft 1 in   

E4 7 ft 1 in   

F1 14 ft 2 in   

F4 14 ft 2 in   

 

In Figure 4.24, four measured strain distributions are presented. The strain 

distributions from SM 0-0 to SM0-3 exhibited linear trends. However, when the 

displacement was increased to 2 in. during SM 0-4, nonlinear trends were observed in 

strain gages A1 and A2. As damage accumulated, more gages exhibited nonlinear 

behavior. 



In Figure 4.24, the strain distribution along the length is presented. Measured 

strains exhibited steep gradients near the north end, which was likely caused by cracks in 

the grout. The highest strain measured during SM 0-6 was 1280 με by gage A4, which is 

equivalent to a stress of 40 ksi.  
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Figure 4.24 Initial Stain Distributions for Cable 03 
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Figure 4.25 Stain Distribution along the Length of Cable 03 

 

The strain distributions from the four sets of strain gages at the north end of the 

specimen are displayed in Figure 4.26. Strain values presented were obtained when the 

specimen was subjected to maximum transverse displacement.  

The strain did not decrease linearly with distance from the end of specimen. The 

largest strains were measured in group B, rather than measured in group A. Recorded 

strains from group D were also higher than those from group C. Acquired strains from the 

top and bottom of the same strand also revealed considerable differences. For example, 

the amplitude of gage B2 was about one-tenth that of gage B1 during SM 0-1.  This 

difference indicates that considerable shear stress developed along the strand and this 

shear stress probably contributed to debonding of the strands from the surrounding grout.  
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Figure 4.26 Strain Distributions at North End of Cable 03 

 

4.6.3 Natural Frequencies 

Natural frequencies were measured five times throughout the fatigue test and 

results are summarized in Table 4.21. The natural frequencies decreased gradually as the 

number of wire breaks increased. The variation of natural frequencies was observed first 

in NF 2.  
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Table 4.21 Measured Natural Frequency for Cable 03 (Hz) 
NF 0 NF 1 NF 2 NF 3 NF 4 Mode of 

Vibration 4/16/06 4/28/06 5/01/06 5/04/06 5/11/06 

1 4.3 4.3 4.2 3.9 3.5 

2 8.8 8.7 8.5 7.9 7.1 

3 13.7 13.5 13.2 12.4 11.2 

4 19.0 18.7 18.2 17.3 15.8 

5 24.7 23.8 23.2 22.8 21.2 

6 31.6 30.3 29.4 29.1 27.3 

Wire breaks reported 0 0 4 6 8 

 

4.6.4 Acoustic Sensor Monitoring 

A total of eight wire breaks were reported by the SoundPrintTM system. Reported 

wire breaks were concentrated at the north end of the specimen. The wire reports are 

displayed in Figure 4.27 and summarized in Table 4.22.  
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Figure 4.27 Location of Reported Wire Break for Cable 03 
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Table 4.22 Summary of Wire Breaks Detected by Acoustic Sensors for Cable 03 

Wire Break Number Date and Time Estimated Number 
of Cycle 

Test start 4/25/06  0 

1 4/28/06 7:21 pm 415,000 

2 4/29/06 6:40am 476,000 

3 4/29/06 7:41 pm 546,000 

4 4/29/06 7:52 pm 547,000 

5 5/2/06 6:49 am 858,000 

6 5/2/06 6:59 pm 924,000 

7 5/8/06 6:23 am 1,510,000 

8 5/8/06 6:38 pm 1,576,000 

 

4.6.5 Autopsy of Cable 03 

After the test was completed, the specimen was disassembled to determine the 

extent of damage. A total of twelve wire breaks were identified at the north end of the 

specimen. Six wires fractured within 1 in. of the outer face of the anchor head and six 

wires fractured inside the anchor head. Outside the anchor head, three wire breaks were 

identified in each strand (Figure 4.28a and b). Three wires fractured in the top strand but 

two wires fractured in the bottom strand – one outer wire experienced two wire breaks. 

Inside the anchor head, six wires fractured only in the bottom strand. Two wires 

including the center wire fractured within 0.25 in. of the outer face of the anchor head. 

Four wires fractured at the wedge (Figure 4.28c and d).  



 

(a) Outside of anchor head (Top strand) (b) Outside of anchor head (Bottom strand) 

(c) Inside of anchor head (Bottom strand) (d) Wire fracture at wedges (Bottom strand) 

Figure 4.28 Wire Fractures for Cable 03 

 

Grout at the north end was fragmented (Figure 4.29a and b). When the post-

tensioning duct was opened, the grout surrounding the strands was pulverized. A vertical 

crack was observed along the entire length of the specimen (Figure 4.29c and d).  

While a total of twelve wire breaks were identified, the SoundPrintTM system 

reported eight wire breaks. The SoundPrintTM system probably could not distinguish 

multiple wire fractures from single wire fracture or the secondary wire fractures in broken 

wire did not generate a considerable amount of energy. The location of wire breaks were 

in general agreement with findings from the autopsy.  
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(a) North side, (partially opened) (b) North side, (fully opened) 

  

Vertical crack Vertical crack 

(c) South side (d) Actuator area 

Figure 4.29 Crack Propagation for Cable 03 

4.7 SUMMARY  

Three, 49-ft long cable specimens with two 0.6-in. strands were constructed and 

subjected to cyclic loading. The static and dynamic responses of the specimens were 

measured periodically as damage accumulated.  

The transverse stiffness decreased gradually throughout test period but did not 

change appreciably before the first few wire breaks were detected. The strain 

distributions indicated that the stresses along the strands varied significantly once the 

grout cracked. The strain distribution in Cable 03 behaved in an elastic manner when 

subjected to low-amplitude displacements; but behaved in an inelastic manner as the 

amplitude of the displacement increased and the grout cracked.  
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The natural frequencies of the specimens gradually decreased during the fatigue 

tests. In general, the variation was not sensitive to the first few wire breaks. When the 

tests were terminated, a top strand was completely fractured for Cable 02 and a bottom 

strand and three wires of top strand were fractured for Cable 03, respectively. While more 

than 50% of cross-sectional area of the strand had been lost, neither the transverse 

stiffness nor the natural frequencies decreased proportionally. The total variation of 

natural frequencies is summarized in Table 4.23.  

The SoundPrintTM system monitored wire breaks and identified the locations 

during the test period. The report was in general agreement with the findings from the 

autopsy. However, the number of reported wire breaks was less than the number of actual 

wire breaks identified during the autopsy.  

 

Table 4.23 Variation of Natural Frequencies (Hz) 
Cable 01 Cable 02 Cable 03 Mode of 

Vibration Initial Final Initial Final Initial Final 

1 4.6 4.2 4.4 3.9 4.3 3.5 

2 9.4 8.6 8.9 7.9 8.8 7.1 

3 14.5 13.2 13.6 12.4 13.7 11.2 

4 20.0 18.3 18.6 17.4 19.0 15.8 

5 25.6 23.6 23.5 22.6 24.7 21.2 

6 32.2 29.7 29.6 28.9 31.6 27.3 
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Chapter 5: Response of Post-Tensioned Tendons 

 

Two, 36-ft external post-tensioned tendons were constructed and tested in this 

phase of the investigation. Two techniques were used to induce damage in the test 

specimens: Tendon 01 was subjected to fatigue loading, while the strands in Tendon 02 

were exposed to acid. In both cases, the number of fractured wires increased with time, 

and the natural frequencies of the specimens were measured periodically during the tests.  

Measured data, including the frequency signatures and the results of the autopsies, are 

presented in this chapter. The relationships between the number of wire breaks and the 

measured frequencies are discussed in Chapters 6 and 7.  

5.1 OVERVIEW OF TESTS 

Both test specimens were designed to simulate one section of a continuous 

external tendon between a diaphragm and a deviator or between two deviators in a post-

tensioned bridge. The strands were anchored at each end in a concrete block using 

commercial post-tensioning hardware.  

Tendon 01 comprised twelve, 0.6-in. diameter strands prestressed to 60% of 

GUTS, for a total applied prestressing force of 425 kip. Damage was induced in this 

specimen by fatigue loading in the transverse direction. The test setup was similar to that 

used by Poser (2001) and Ridd (2004) to evaluate the fatigue response of stay cables. The 

transverse load was applied near the quarter point of the specimen and 25 wire breaks 

were identified at the end of the fatigue tests. The wire breaks were monitored 

continuously during the fatigue tests using acoustic sensors and the natural frequencies 

were measured 13 times.  

Tendon 02 comprised nine, 0.6-in. diameter strands prestressed to 80% of GUTS, 

for a total prestressing force of 425 kip. During construction, three 7-in. long grout voids 

were intentionally created along the length of the specimen. During the test, each void 

was filled with a hydrochloric acid solution to simulate hydrogen induced corrosion 
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(HIC) of the strand. At the end of the exposure test, 30 wire breaks were identified. 

Corrosion was monitored visually during the five-month exposure test, and the natural 

frequencies were measured 25 times. 

The test schedule for specimens Tendons 01 and 02 is summarized in Table 5.1. 

The construction process was similar for the two specimens, and is discussed in Section 

5.2, instrumentation is summarized in Section 5.3, the response of Tendon 01 is presented 

in Section 5.4, and the response of Tendon 02 is discussed in Section 5.5. 

 

Table 5.1 Test Schedule for Tendon Specimens 

(a) Tendon 01 
Stage Date 

Stress strand 11/10/05 

Grout specimen 11/16/05 

Begin fatigue tests 1/4/06 

End fatigue tests 1/26/06 

Autopsy 1/27/06 

(b) Tendon 02 
Stage Date 

Stress strand 2/14/06 

Grout specimen 2/16/06 

Begin acid exposure – Void 1 3/06/06 

Begin acid exposure – Void 2 4/28/06 

Begin acid exposure – Void 3 7/03/06 

End exposure test 8/07/06 

Autopsy 8/09/06 

 



5.2 CONSTRUCTION OF TENDON SPECIMENS 

The procedures used to construct the two tendon specimens are summarized 

below.  The construction materials were nominally identical for the two specimens. 

5.2.1 Reaction frame 

A 32-ft, steel reaction frame was used to resist the prestressing force in the post-

tensioned tendons (Figure 5.1). The frame was designed and constructed by Poser (2001) 

for fatigue tests of cable stays. Minor changes were made to accommodate the concrete 

anchor blocks and the location of the applied loads for Tendon 01. 

 

 

W18×97 

W14×90

WT 9×14.5

Figure 5.1 Reaction Frame 

5.2.2 Concrete Anchor Blocks 

Four concrete blocks were constructed to enclose the post-tensioning hardware 

used to anchor the strands (Figure 5.2). Each block was 24 in. long with an 18×18-in. 

cross section. The reinforcement in the blocks was designed to resist the prestressing 

forces and the corresponding local bursting stresses (Figure 5.2a). Two U-shaped bars 

were used as the longitudinal reinforcement. Closed hoops with 135° hooks were used as 

the transverse reinforcement. Spirals were positioned in the middle of the cage to resist 

bursting forces. Design calculations for the anchor blocks are presented in Appendix I. 
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Commercial, post-tensioning hardware was used. VSL Type E 6-12 is designed to 

accommodate twelve, 0.6-in. diameter strands and includes an anchor head, bearing plate, 

anchor cap, and high density polyethylene (HDPE) duct (Figure 5.2b). The HDPE duct 

extended 4 ft beyond the outer face of the concrete blocks (Figure 5.2c) to facilitate 

construction of the specimen. The measured compressive strength of the concrete (Figure 

5.2d) was 4500 psi at 28 days. 

  

(a) Reinforcement cage (b) Anchor plate within reinforcement 

  

(c) Concrete form (d) Completed blocks 

Figure 5.2 Construction of Concrete Anchor Blocks 

5.2.3 Assembly of Tendon Specimens 

After curing, a concrete anchor block was placed at each end of the steel reaction 

frame (Figure 5.3). Additional sections of duct were attached to the anchor blocks using 
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VSL plastic couplers (Figure 5.4). Each strand was pushed through the anchor head at 

one end, the HDPE duct, and the anchor head at the other end of the specimen. Care was 

taken to ensure that each strand entered and exited through corresponding holes in the 

anchor heads and that strands did not cross along the length of the specimens. The strands 

were positioned in the anchor head from bottom to top. As the strands became congested 

in the duct, the friction increased among the strands in the narrow cross-section of the 

duct, and higher forces were required to push the strands through the duct. Once 

positioned, the strands were held in place in the anchor heads using wedges. 

 

 

 

5'

36'

32'2' 2'

18" x 18"

 
Figure 5.3 Configuration of Tendon Specimens 
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Figure 5.4 VSL Mechanical Coupler for HDPE Duct 

5.2.4 Prestressing Procedure  

After the components were assembled, strands were prestressed in two stages. 

First, an axial force of approximately 5 kip was applied to each strand to align the strands 

with the anchor heads and seat the wedges. Then the desired level of prestressing was 

applied simultaneously to all strands.  

5.2.4.1 Initial Prestressing 

After assembly, the strands were loosely positioned and the wedges were not 

completely seated in the anchor heads. In order to prevent an uneven distribution of stress 

within the strands during the final stressing, the strands were first tensioned individually 

to about a force of approximately 5 kip using a mono hydraulic ram (Figure 5.5).  

Due to the congestion of strands at the anchor head, a 2-ft long steel pipe with a 

tapered nose was used to transfer axial compression to the wedges. Two springs were 

positioned at the nose of the pipe to prevent the movement of wedges when the force was 

released.  
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Figure 5.5 Initial Prestressing Procedure 

5.2.4.2 Final Prestressing 

After each strand was stressed individually, a center-hole hydraulic ram was used 

to stress the strands simultaneously to the target force level (Figure 5.6).  In Tendon 01, 

the twelve strands were stressed to 60% of GUTS and in Tendon 02, the nine strands 

were stressed to 80% of GUTS. The total prestressing force was the same in both 

specimens, 425 kip.  In order to distribute the stress evenly among the strands, a plate 

with two springs along each strand was positioned between the ram and the anchor head.  

Concrete Block

Anchor Head

Plate with Spring

Hyrdaulic Ram

Cylinder
Anchor Head

Strand
Anchor Plate

 

Figure 5.6 Arrangement of Equipment for Final Prestressing 
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The stress was applied in three cycles to minimize seating losses.  In the first 

cycle, the maximum force was 30% of the target force level.  This force was released and 

increased to 60% of the target force in the second cycle.  During the third cycle, the force 

was increased to 105% of the target force level to compensate for expected losses. The 

force in the hydraulic cylinder was monitored using a pressure gage during the stressing 

operation (Figure 5.7). 

 

Figure 5.7 Application of Final Prestressing 

 

5.2.5 Grouting Procedure 

After the strands were stressed, the ducts were filled with a prepackaged 

cementitious grout, Sika 300 PT. The specimens were grouted in a horizontal position 

using the configuration recommended by VSL. Grout was pumped into the specimen 

through an inlet attached to the south anchor plate (Figure 5.8). The corresponding hole 

in the north anchor plate was plugged. A vent was also connected to the anchor plate at 

each end of the specimen.  

5.2.6 Intentional Voids in Tendon 02 

Three, 7-in. long voids were intentionally created in Tendon 02 (Figure 5.9).  To 

create the voids, pieces of cellulose sponge were attached to sections of HDPE duct 
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(Figure 5.10a) using epoxy and transparent tape. These sections of ducts were positioned 

along the length of the specimen using the plastic couplers (Figure 5.10b). Each section 

of duct was rotated such that the sponge was at the top. 

 

Inlet

Vent Vent

Plug Grout Pump

North South

(a) Arrangement of grout inlet and vents 

(b) North end (c) South end 

Figure 5.8 Arrangement of Grout Inlet and Vents 
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Figure 5.9 Location of Grout Voids in Tendon 02 

(a) Sponge attached to sections of duct (b) Assembly of duct 

  

(c) Sponge after grouting (d) Strands after removal of sponge and grout 

Figure 5.10 Construction of Grout Voids – Tendon 02 
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After grouting, the top half of the sections of duct in the vicinity of the voids were 

removed (Figure 5.10c). The sponges were then removed, and the thin layer of grout that 

covered the strand was chipped away.  Four to six strands were visible in each void 

(Figure 5.10d) at the completion of the process. 

 

5.3 INSTRUMENTATION 

Two types of instruments were used to monitor the response of the tendon 

specimens. Acoustic sensors were positioned along Tendon 01 and were used to detect 

wire breaks during the fatigue tests. Accelerometers were used on both specimens to 

determine the natural frequencies. The locations of the instruments are shown in Figure 

5.11 for Tendon 01 and in Figure 5.12 for Tendon 02.   

5.3.1 Acoustic Sensors 

Four acoustic sensors were attached to Tendon 01. Two sensors were positioned 

7 ft from each end and attached to the bottom of the duct using a cyanoacrylate adhesive 

and wrapped by a metal band (Figure 5.13a). The remaining two sensors were positioned 

on the outer faces of the concrete anchor blocks using a cyanoacrylate adhesive (Figure 

5.13b).  

5.3.2 Accelerometers 

Three, one-dimensional accelerometers were used to monitor the frequency 

response of Tendon 01 and Tendon 02. The accelerometers and DAQ system are 

described in Appendix E. The accelerometers were positioned 5.4 ft, 10 ft, and 29.2 ft 

from the north end of Tendon 01 and 6.8 ft, 10 ft, and 29.2 ft from the west end of 

Tendon 02. 

The accelerometers were attached to the post-tensioning ducts using hot-melt glue 

for Tendon 01 (Figure 5.14). Because Tendon 02 was outside during the exposure test, 

the accelerometers were potted and then attached to the post-tensioning duct for Tendon 

02 (Figure 5.15).  
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Figure 5.11  Position of Load Frame, Accelerometers, and Acoustic Sensors for 
Tendon 01 
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19.2'6.8' 6.8'3.2'

Acc 1Acc 3 Acc 2East West

 
Figure 5.12 Position of Accelerometers for Tendon 02 

 

(a) At free length (b) At anchor block 

Figure 5.13 Acoustic Sensors used to Monitor Tendon 01 
 

 
Figure 5.14 Accelerometer Attached to Tendon 01 
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Figure 5.15 Accelerometer Attached to Tendon 02 

5.4 TENDON 01 

The measured response of Tendon 01 is discussed in this section. The specimen 

was subjected to 3,900,000 loading cycles during a 22-day period.  During the fatigue 

tests, damage accumulated in the form of wire breaks in the strand and cracks in the grout. 

The acoustic sensors were used to detect the wire breaks. Periodic measurements of the 

transverse stiffness and natural frequencies of Tendon 01 were made during the fatigue 

test (Table 5.2) to quantify changes in the global properties of the specimen.  

The fatigue test (Figure 5.16) was operated in displacement control and the 

applied load was positioned 10 ft from the south end of the specimen (Figure 5.11). 

Initially, the specimen was excited upward and downward from the zero position. 

However, after 10 days the specimen was excited only upward to stabilize the hydraulic 

system. The span and frequency of the applied load were adjusted periodically to 

accelerate the fatigue damage.  The hydraulic actuator and control system used for the 

fatigue tests are described in Appendix D.  The overall test program for Tendon 01 is 

presented in Table 5.3 and the test schedule is summarized in Appendix J. 

The measured transverse stiffness of Tendon 01 is discussed in Section 5.4.1 and 

the measured natural frequencies are summarized in Section 5.4.2. Wire breaks detected 
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by the acoustic monitoring system are documented in Section 5.4.3 and the condition of 

the specimen after the autopsy is presented in Section 5.4.4. 

 

 
Figure 5.16 Overview of Tendon 01 

Table 5.2 Periodic Tests - Tendon 01 

Date Transverse 
Stiffness 

Natural 
Frequency 

Wire Breaks 
Reported*

- x x 0 

1/05/06 - x 0 

1/09/06 x x 2 

1/10/06 x x 6 

1/11/06 x x 9 

1/15/06 x x 11 

1/16/06 x x 12 

1/19/06 x x 12 

1/20/06 x x 12 

1/21/06 x x 14 

1/22/06 x x 14 

1/24/06 x x 17 

1/25/06 x x 20 

1/26/06 x x 21 
* Wire breaks reported by acoustic sensors. 
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Table 5.3 Fatigue Tests – Tendon 01 
Configuration Date Cycle 

Set Point (in.) Span (in.) Frequency (Hz) 
1/04/06 0 0 ± 0.5 2.0 
1/11/06 1,047,695 0 ± 0.3 2.0 
1/13/06 1,248,230 0.22 ± 0.2 2.0 
1/15/06 1,593,858 0.22 ± 0.2 3.5 
1/16/06 n/a 0.22 ± 0.2 4.0 
1/17/06 n/a 0.3 ± 0.28 3.5 
1/18/06 n/a 0.4 ± 0.38 2.5 
1/19/06 2,623,439 0.5 ± 0.48 2.5 
1/19/06 2,660,152 0.6 ± 0.58 2.0 
1/19/06 2,726,011 0.65 ± 0.58 2.0 
1/20/06 2,814,775 0.75 ± 0.6 2.5 
1/20/06 2,861,425 0.8 ± 0.6 2.5 
1/21/06 3,026,868 0.9 ± 0.6 2.0 
1/22/06 3,201,894 0.9 ± 0.65 2.0 
1/23/06 3,369,590 1.1 ± 0.65 2.0 
1/23/06 3,400,336 1.2 ± 0.6 2.0 
1/23/06 3,416,880 1.3 ± 0.6 2.0 
1/24/06 3,532,401 1.4 ± 0.6 2.0 
1/25/06 3,773,862 1.5 ± 0.6 2.0 
1/25/06 3,797,690 1.6 ± 0.6 2.0 
1/26/06 3,904,211 Test terminated 

 

5.4.1 Transverse Stiffness  

The transverse stiffness of Tendon 01 was recorded thirteen times during the 

fatigue test (Table 5.2). Tests are designated “TS X” where “TS” refers to transverse 

stiffness and “X” indicates the test number.  Reported values of transverse stiffness 

correspond to the displacement at the location of the applied load. Initially, the specimen 

was pushed to displacement levels of ±1.5 in. during the static tests. However, two wire 

breaks were detected during these tests (the sixth wire fractured during TS 2 and the ninth 

wire fractured during TS 3). In all subsequent static tests, the displacement range was 

limited to ±0.6 in.  



The variation of recorded stiffness is displayed in Figure 5.17 and summarized in 

Table 5.4. The load-displacement relationship was linear in all tests and the transverse 

stiffness decreased gradually from 5.6 to 4.8 kip/in. as damage accumulated.  
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Figure 5.17 Transverse Stiffness of Tendon 01 

 

Table 5.4 Transverse Stiffness of Tendon 01 
Measurement 

ID Date Stiffness  
(kip/in.) 

Wire Breaks 
Reported 

TS 0 1/04/06 5.6 0 
TS 1 1/09/06 5.5 2 
TS 2 1/10/06 5.5 6 
TS 3 1/11/06 5.3 9 
TS 4 1/15/06 5.4 11 
TS 5 1/16/06 5.2 12 
TS 6 1/19/06 5.2 12 
TS 7 1/20/06 5.1 12 
TS 8 1/21/06 5.1 14 
TS 9 1/22/06 5.1 14 
TS 10 1/24/06 5.0 17 
TS 11 1/25/06 4.9 20 
TS 12 1/26/06 4.8 21 
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Two wires fractured during static tests (TS 2 on 1/10/06 and TS 3 on 1/11/06). In 

both cases, the specimen was being loaded toward the maximum displacement of 1.5 in. 

The sound of the wire facture was clearly audible and was detected by the acoustic 

sensors. However, these wire breaks did not influence the measured load-displacement 

response. Recorded data before and after the wire break indicated the same stiffness and 

no indication of nonlinear response was observed. Therefore, the data recorded 

immediately after the wire breaks are designated as TS 2 and TS 3, respectively. 

Recorded load-displacement relationships before and after the wire breaks are plotted in 

Figure 5.18 and Figure 5.19.  
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Figure 5.18 Recorded Load-Displacement Response on January 10, 2006 
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Figure 5.19 Recorded Load-Displacement Response on January 11, 2006 

 

5.4.2 Natural Frequencies 

The natural frequencies of the Tendon 01 were measured fourteen times during 

the fatigue tests. Tests are designated “NF X” where “NF” refers to natural frequency and 

“X” indicates the test number. Vibrations were induced by striking the test specimen with 

a rubber hammer at three locations along the length (Figure 5.20). In most cases, this 

method was sufficient to capture the first six modes of vibration.  

The measured response during test NF 4 was considered to be representative of 

the response of Tendon 01. Time-domain data are shown in Figure 5.21(a) and the 

corresponding frequency-domain data are shown in Figure 5.21(b). Unlike the cable 

specimens discussed in Chapter 4, a single peak was not observed in the frequency 

domain for most of the modes. Dual peaks may be observed for the second through the 

sixth modes of vibration in Figure 5.21(b). One possible explanation for the presence of 

the dual peaks is discussed in Chapter 6. 
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The values of the first six natural frequencies obtained from the free-vibration 

tests are summarized in summarized in Table 5.5. For cases where dual peaks were 

observed, the amplitude of one peak was generally two times larger than the amplitude of 

the second peak.  The frequency of the stronger peak is reported in Table 5.5. However, 

in cases where the amplitudes of the two peaks were similar, the natural frequency of that 

mode of vibration is not reported. The complete set of frequency-domain data for Tendon 

01 is presented in Appendix K.  
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Position 1

5.4' 4.6'

CLPosition 2 Position 3

 
Figure 5.20 Location for impact for Tendon Specimens  
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(b) Frequency domain 

Figure 5.21 Representative Response of Tendon 01 (NF 4) 
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Table 5.5 Measured Natural Frequencies for Tendon 01 
NF 0 NF 1 NF 2 NF 3 NF 4 NF 5 NF 6 Mode of 

Vibration 12/22/05 1/05/06 1/09/06 1/10/06 1/11/06 1/15/06 1/16/06 

1 15.4 15.2 15.2 15.1 15.0 14.9 14.7 

2 31.0 30.6 30.7 30.4 30.1 30.0 29.7 

3 47.4 46.8 46.8 46.4 45.9 45.7 45.3 

4 64.4 63.9 63.7 63.2 62.5 62.2 61.7 

5 84.8 83.3 83.7 83.3 82.5 82.3 - 

6 105.7 104.1 104.4 103.6 102.7 102.3 101.6 

Wire breaks 
reported 

0 0 2 6 9 11 12 

 

NF 7 NF 8 NF 9 NF 10 NF 11 NF 12 NF 13 Mode of 
Vibration 1/19/06 1/20/06 1/21/06 1/22/06 1/24/06 1/25/06 1/26/06 

1 14.7 14.7 14.6 14.6 14.5 14.3 14.2 

2 29.6 29.5 29.5 29.5 29.2 28.8 28.7 

3 45.3 45.2 45.0 45.0 44.6 44.0 43.8 

4 61.6 61.5 61.3 61.3 60.8 59.9 59.7 

5 - - 81.1 81.0 80.5 76.9 76.7 

6 101.5 101.2 100.9 100.8 100.2 99.2 98.9 

Wire breaks 
reported 12 12 14 14 17 20 21 

 

The reduction of natural frequencies observed between NF 0 and NF 1 was not 

due to wire breaks. During this period, fatigue cycles were only applied for 18 hours. The 

change in frequencies appeared to be caused by the formation of cracks in the grout, but 

similar trends were not observed in any of the cable specimens.  

In spite of the fact that two wire breaks were reported between NF 1 and NF 2, the 

natural frequencies did not change. Variations in the natural frequencies were only 

observed after the sixth wire break was reported (NF 3). After NF 3, the frequencies of all 

modes decreased as damage accumulated. 

 



5.4.3 Damage Detected by Acoustic Sensors 

A total of 21 wire breaks was detected by the acoustic monitoring system. All 21 

wire breaks were located near north end of the south anchor block. The reported locations 

of the wire breaks are displayed in Figure 5.22 and summarized in Table 5.6. 

North South

22' 6.5" 6' 5"7'Wire Break
Report

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 

 

Figure 5.22 Location of Wire Breaks Detected by Acoustic Sensors 
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Table 5.6 Summary of Wire Breaks – Tendon 01 

Wire Break 
Number Date and Time Estimated 

Number of Cycles

Location of  
Wire Break from 

South End (ft) 
1 1/08/06 11:13 PM 731,000 2.9 

2 1/09/06 7:31 AM 790,000 2.8 

3 1/10/06 12:49 AM 901,000 3.0 

4 1/10/06 7:46 AM 951,000 2.9 

5 1/10/06 8:26 AM 955,000 2.4 

6 1/10/0610:00 AM - 2.8 

7 1/10/06 8:09 PM 1,020,000 3.1 

8 1/10/06 8:43 PM 1,024,000 2.8 

9 1/11/06 10:35 AM - 3.1 

10 1/13/06 10:59 AM 1,249,000 3.1 

11 1/14/06 7:00 AM 1,394,000 3.0 

12 1/16/06 3:36 AM 1,794,000 3.0 

13 1/20/06 12:19 AM 2,739,000 3.0 

14 1/20/06 4:47 PM 2,879,000 3.0 

15 1/23/06 11:57 AM 3,382,000 2.3 

16 1/23/06 8:06 PM 3,440,000 2.6 

17 1/24/06 2:29 AM 3,480,000 2.6 

18 1/24/06 4:23 PM 3,494,000 2.3 

19 1/25/06 1:04 AM 3,642,000 3.0 

20 1/25/06 9:49 AM 3,705,000 2.5 

21 1/26/06 10:28 AM 3,875,000 3.0 

 

5.4.4 Autopsy of Tendon 01 

After the fatigue test was terminated, the specimen was disassembled to determine 

the extent of damage. The autopsy focused initially on wire fractures along the length of 

the specimen. However, extensive corrosion of the anchor heads was observed, and the 

scope was extended to include the post-tensioning anchorage system. The concrete 

anchor blocks were demolished and all the post-tensioning components were retrieved to 

assess the propagation of corrosion (Figure 5.23). 



 
Figure 5.23 Demolition of Concrete Anchor Block for Tendon 01 

 

After the autopsy, it was concluded that corrosion of the anchor head did not 

influence the response of Tendon 01. Findings related to the presence of corrosion in 

Tendon 01 are summarized in Appendix L.  

 

(a) Typical section (b) Wire Fractures 

Face of  
concrete block 

Wire fracture 
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3 5 4 6 
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8 10 7 

12 11 

Figure 5.24 Wire Fractures at Face of Concrete Block 
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Twenty-five wire breaks was identified during the autopsy. All wire breaks 

occurred in strands positioned toward the bottom of the cross section near the north face 

of the south anchor block. The locations of wire fractures are shown in Figure 5.24. All 

seven wires fractured in strands 7, 11, and 12. Two wires fractured in the strands 8 and 10. 

The grout surrounding the fractured wires was severely fragmented, but no voids were 

observed in the grout (Figure 5.25).  

Twenty-one wire breaks were reported by the acoustic sensors; but 25 wire breaks 

were identified during the autopsy. The location of the wire breaks identified by the 

acoustic sensors was in general agreement with the observed distribution of wire breaks. 

 

(a) Condition of grout near fractured wires (b) South anchor head 

(c) Free length at north end of specimen (d) North anchor block 

Figure 5.25 Condition of Grout – Tendon 01 
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5.5 TENDON 02 

The measured response of Tendon 02 is discussed in this section. Damage was 

induced in Tendon 02 by exposing the strand to acid over a five-month period (Figure 

5.26). Wire breaks occurred at three locations along the length of the tendon where grout 

voids had been intentionally created. The natural frequencies of Tendon 02 were 

measured periodically during the exposure test. 

Details of the acid exposure tests are given in Section 5.5.1and the measured 

natural frequencies are summarized in Section 5.5.2. Non-destructive tests used to assess 

the likelihood of wire breaks are described in Section 5.5.3, and the condition of the 

specimen after the autopsy is presented in Section 5.5.4. 

5.5.1 Corrosion Induced by Exposure to Hydrochloric Acid 

As discussed in Section 5.2.6, three, 7-in. voids were created in the grout during 

construction of Tendon 02. Four to six strands were exposed in each void. Corrosion was 

induced in the strands at these locations by coating the exposed strand with a 15% 

solution of hydrochloric acid. The acid was applied to each void for several weeks until 

multiple wire breaks were detected by visual inspection.  The void was then covered to 

prevent infiltration of water from the environment, and acid was applied to the next void 

(Table 5.7). 

Table 5.7 Schedule of Acid Exposure 

Location Initiation Completion Exposure Period 
(day) 

Void 1 3/09/06 4/12/06 37 

Void 2 4/28/06 6/25/06 58 

Void 3 7/03/06 8/07/06 35 

 

 

 

 152



 
Figure 5.26 Overview of Tendon 02 

 

Most of the damage in Tendon 02 was detected by visual observation. 

Photographs taken when the acid was applied to Void 2 are shown in Figure 5.27 and are 

considered to be representative. 

Before the acid was ponded in the grout void, the grout was intact and no 

corrosion was observed on the surface of the strand (Figure 5.27a). When the acid was 

poured into the void, the solution immediately reacted with the grout and formed green 

bubbles (Figure 5.27b). These bubbles turned dark brown within 2 to 4 hours (Figure 

5.27c). The bubbles were only generated during the first two to three weeks of exposure 

to the acid. These bubbles were not produced during the preliminary tests discussed in 

Appendix M; therefore, it is believed that the bubbles were a byproduct of the reaction 

between the acid and the cement grout, which has a high pH. The residue of these 

reactions was observed on the surface of the strand (Figure 5.27d). 
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(a) Before acid attack (b) Chemical reaction: phase 1 

(c) Chemical reaction: phase 2 (d) Residue from bubble 

Figure 5.27 Observed Response of Tendon 02 during Exposure to Acid 
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(e) After rainfall (f) Corrosion products after rain evaporated 

(g) Void filled with acid (h) Visual observation of broken wire 

Figure 5.27 (cont.) Observed Response of Tendon 02 during Exposure to Acid 

 

Because the voids were exposed to the environment, rain water also accumulated 

in the ponding regions. After rainfall, acid was not poured into the void to avoid overflow 

(Figure 5.27e). After the surface of the strand dried, corrosion products were visible 

(Figure 5.27f). 

After several weeks, pouring acid into the void did not generate green bubbles and 

the surface of the strand appeared to be cleaned (Figure 5.27g). When the acid dried, 

corrosion products were once again visible on the surface of the strand (Figure 5.27h). A 

screwdriver was wedged into the strand to detect the presence of broken wires. 
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Acid was only ponded in one void at a time. During the time that one void was 

exposed to permit ponding of the acid, the other two voids were covered with plastic to 

prevent infiltration of water from the environment. As a result, visual observations of 

damage in a void were only made during the portion of the test when the void was 

exposed.  After the test, it was concluded that the number of wire breaks in Void 1 

increased while acid was ponded in Voids 2 and 3, but no information is available about 

when those wire fractured. 

5.5.2 Natural Frequencies  

The natural frequencies were measured 25 times before and during the acid 

exposure test. Four sets of readings were taken during the construction of the grout voids. 

These are numbered NF 0-0 (no voids) through NF 0-3 (after construction of Void 3). 

Twenty one measurements were made during the exposure test and are numbered NF 1 

through NF 21. The test program is summarized in Table 5.8. The complete set of 

recorded signals in the frequency domain is presented in Appendix K. 

5.5.2.1 Response before Exposure Test 

The natural frequencies were measured before and after each of the three voids 

was created (Table 5.9). The first grout void (Void 1) was created at the east end of the 

Tendon 02 and the void at midspan (Void 2) was created last.  Therefore, the order in 

which the voids were constructed did not coincide with the order in which the voids were 

filled with acid. 

The measured natural frequencies increased slightly as the voids were constructed. 

This result was not expected because removal of the grout in the vicinity of the voids was 

assumed to damage the specimen. However, the changes in frequency were modest 

compare with those observed during the exposure tests. 
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Table 5.8 Summary of Test Program – Tendon 02 
Date Test / Remark 

3/06/06 Gout voids produced 
3/06/06 NF 0-0, NF0-1, NF0-2, and NF 0-3 
3/09/06 Begin ponding acid in Void 1 
3/09/06 NF 1 
3/15/06 NF 2 
3/21/06 NF 3 
3/29/06 NF 4 
4/07/06 NF 5 
4/12/06 First wire break observed in Void 1 
4/12/06 NF 6 
4/21/06 NF 7 
4/28/06 Begin ponding acid in Void 2 
4/28/06 NF 8 
5/06/06 NF 9 
5/12/06 NF 10 
5/19/06 NF 11 
5/26/06 NF 12 
6/02/06 NF 13 
6/06/06 NF 14 
6/16/06 NF 15 
6/25/06 First wire break observed in Void 2 
6/25/06 NF 16 
7/02/06 NF 17 
7/03/06 Begin ponding acid in Void 3 
7/10/06 NF 18 
7/24/06 First wire break observed in Void 3 
7/26/06 NF 19 
8/01/06 NF 20 
8/06/06 Second wire break observed in void 3 
8/06/06 NF 21 

 

Table 5.9 Variation of Natural Frequencies in Tendon 02 before Exposure to Acid 
Natural Frequencies, Hz Mode 

NF 0-0 NF 0-1 NF 0-3 NF 0-2 
1 15.9 16.0 16.0 16.0 

2 31.7 31.8 31.8 31.8 

3 48.8 48.8 48.9 49.0 

4 65.8 65.8 65.9 65.8 

5 84.0 84.0 84.0 84.1 

6 102.8 102.8 102.9 102.9 



5.5.2.2 Response during Exposure Test 

The natural frequencies (Figure 5.28) of the test specimen were recorded twenty 

one times during the exposure test.  The data are divided into three groups, based on the 

void where the acid was ponded at the time of the dynamic test. The test results are 

summarized in Table 5.10 through Table 5.12. 

 

 
Figure 5.28 Natural Frequency Measurement of Tendon 02 

 

Table 5.10 Variation of Natural Frequencies (Void 1) (Hz) 
NF 1 NF 2 NF 3 NF 4 NF 5  NF 6 NF 7 Mode of 

Vibration 3/09 3/15 3/21 3/29 4/07 4/12 4/12 4/21 
1 16.4 16.4 16.5 16.5 16.5 15.2 15.2 

2 32.3 32.2 32.1 32.0 32.1 31.4 31.6 

3 48.9 48.7 48.6 48.4 48.4 47.5 47.6 

4 65.9 65.6 65.4 65.0 65.0 63.8 63.9 

5 83.8 83.3 82.8 82.3 82.3 80.9 81.1 

6 102.3 101.6 101.1 100.4 100.5 

Wire 

fracture 

identified 

in Void 1 

98.8 98.9 
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Table 5.11 Variation of Natural Frequencies (Void 2) (Hz) 
NF 8 NF 9 NF 10 NF 11 NF 12 NF 13 NF 14 NF 15  NF 16Mode of 

Vibration 4/28 5/06 5/12 5/19 5/26 6/02 6/06 6/16 6/25 6/25 
1 15.1 15.2 15.2 - 15.2 15.4 15.2 15.4 14.9 

2 31.4 31.4 31.6 31.2 31.5 31.6 31.3 31.6 30.4 

3 47.4 47.3 47.7 47.2 47.5 47.6 47.3 47.6 45.8 

4 63.7 63.7 64.0 63.7 64.0 64.0 63.7 64.0 61.7 

5 80.9 80.8 81.2 80.9 81.4 81.4 81.1 81.2 78.6 

6 98.7 98.7 98.9 99.2 99.3 99.3 99.2 99.2 

Wire 

fracture 

identified 

in Void 2 

95.8 

 

Table 5.12 Variation of Natural Frequencies (Void 3) (Hz) 
NF 17 NF 18  NF 19 NF 20  NF 21 Mode of 

Vibration 7/02 7/10 7/24 7/26 8/01 8/06 8/06 
1 14.9 14.8 13.5 13.5 13.2 

2 30.5 30.3 26.8 26.9 26.3 

3 45.9 45.6 41.3 41.3 40.4 

4 61.7 61.4 55.7 55.7 54.5 

5 78.7 78.2 71.7 71.0 69.5 

6 96.0 95.5 

1st Wire 

Fracture 

Identified 

in Void 3 

- 86.6 

2nd Wire 

Fracture 

Identified 

in Void 3 

84.9 

 

As discussed in Section 5.4.2, multiple peaks were observed in the frequency 

domain for Tendon 02 (Figure 5.29). This behavior was more pronounced in the fourth, 

fifth, and sixth modes of vibration, but was also observed in the lower three modes. In 

most cases, the relative amplitudes of the peaks were considerably different. Therefore, 

the frequency corresponding to the larger amplitude peak was selected and reported in 

Table 5.10 through Table 5.12. However, during NF 11, the first mode of vibration 

exhibited the dual peaks with comparable amplitude, and the frequency of this mode is 

not reported. 
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(a) NF 0-3 (b) NF 1 
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(c) NF 6 (d) NF 11 
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(e) NF 13 (f) NF 16 

Figure 5.29 Normalized Root Mean Square (RMS) of Tendon 02 
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Between NF 0-2 and NF 1, Tendon 02 was moved from the south end of Ferguson 

Laboratory, where it had been constructed, to outside the north end of the laboratory, 

where it was located for the exposure test. The natural frequencies corresponding to the 

first, second, and fourth modes of vibration increased slightly after the specimen was 

moved, while the frequencies corresponding to the third, fifth, and sixth modes of 

vibration decreased slightly. 

During the exposure test, the natural frequencies did not change appreciably until 

fractured wires were visually identified before NF 6, NF 16, NF 19, and NF 21. Due to 

congestion, only the strands in the top layer were visible. However, once a wire fractured, 

the broken wire unraveled with respect to the other wires within the void, and was easily 

detected. The number of wire breaks identified in the vicinity of each void at the 

conclusion of the ponding period for that void is summarized in Table 5.13. 

 

Table 5.13 Wire Breaks in each Void Detected by Visual Inspection 

Date Location Number of 
Wire Breaks Remark 

4/12 Void 1 3 Two fractures in one strand 
6/25 Void 2 3 Two fractures in one strand 
7/24 Void 3 1 - 
8/6 Void 3 3 Two fractures in one strand 

8/6 Void 1 10 Seven addition wire breaks occurred in Void 1 between 
4/12 and 8/6 

8/6 Void 2 8 Five additional wire breaks occurred in Void 2 
between 6/25 and 8/6 

 

Recorded natural frequencies exhibited slight variations between the wire 

fractures. For example, the natural frequencies increased and decreased two times 

between NF 12 and NF 15. These variations were not observed in any of the other 

specimens tested during this investigation and are likely attributed to thermal variations, 

since Tendon 02 was stored outdoors during the exposure tests. 

Following the completion of the exposure test on 8/6/06, additional wire breaks 

were identified in the vicinity of Void 1 (Figure 5.30) and Void 2 (Figure 5.31). Because 



these locations were only inspected while acid was ponded in these voids, nothing is 

known about when these wires fractured. 

The condition of the strand in the vicinity of Void 3 is shown in Figure 5.32.  

Significant corrosion was observed on the surface of exposed strands in all voids and the 

surface of strands was blistered and roughened. Corrosion products were easily removed 

by tapping the strand with a screwdriver. In spite of the presence of severe corrosion 

products, severe pitting was not observed. Therefore, the strands appeared to fail by HIC. 

 

  
(a) First observation (4/12/06) (b) Second observation (8/06/06) 

Figure 5.30 Observed Wire Breaks at Void 1 at Conclusion of Exposure Test 

  
(a) First observation (6/25/06) (b) Second observation (8/06/06) 

Figure 5.31 Observed Wire Breaks at Void 2 at Conclusion of Exposure Test 

 162



 
Figure 5.32 Observed Wire Breaks at Void 3 at Conclusion of Exposure Test 

 

5.5.3 Screwdriver Penetration Test 

The screwdriver penetration test was originally developed to detect wire fractures 

in unbonded tendons. For this situation, the stress in the broken wire is released and the 

wire unravels from the strand. A screwdriver struck by a hammer can be pushed beneath 

the broken wire. The same approach was used to determine if stress in a broken wire in a 

grouted tendon recovers with distance from the wire break.  

The tests were conducted by testing the soundness of the strand within in Void 3 

(Figure 5.33). The first test was performed between NF 6 and NF 7 and the second test 

was performed between NF 16 and NF 17 (Figure 5.34). In spite of numerous wire 

fractures observed in Voids 1 and 2 at the time of these tests, broken wires were not 

identified using the screwdriver penetration test. The grout appeared to absorb the energy 

from the wire fractures and maintain the original geometry of strands. In the case of the 

grouted tendon, the broken wire is expected to recover a portion of the original axial 

stress, such that the screw driver cannot penetrate between wires several feet from the 

wire break.  
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18'
9'

4'

Void 1

Tested region (Void 3)

WestEast Fractured Wires (Void 1, Void 2)

 
Figure 5.33  Tested Region and Location of Wire Breaks 

 

 
Figure 5.34 Screwdriver Penetration Test 
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5.5.4 Autopsy of Tendon 02 

Tendon 02 was disassembled at the end of the exposure test to determine the 

extent of damage.  Thirty wire breaks were identified (Figure 5.35): 16 in the vicinity of 

Void 1, 11 in the vicinity of Void 2, and 3 in the vicinity of Void 3.  Nine of these wire 

breaks occurred in the second layer of strands, which is why the breaks were not 

observed in the visual inspection conducted at the end of the exposure test.  The grout 

was fragmented along nearly the entire length of the tendon. The grout in the vicinity of 

the voids was nearly completely pulverized (Figure 5.36). 

While 30 wire breaks were identified in the three voids, it is expected that this 

number over-estimated the loss of cross-sectional area in the tendon.  Because the same 

strand were exposed in each void, it is likely that wires in the same strand fractured in 

more than one void. Therefore, the loss of cross-sectional area of the strands was 

conservatively expected to higher than a maximum number of wire breaks in single void: 

16 wire fractures in Void 1.  

 

(a) Fractured wires (b) Completely fractured strand 

Figure 5.35 Condition of Strand Observed during Autopsy 
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Figure 5.36 Condition of Grout in Vicinity of Void 1 after Autopsy 

5.6 SUMMARY 

The response of two, grouted, 36-ft external tendons was discussed in this chapter.  

Fatigue loading was used to induce damage at one location in Tendon 01, while exposure 

to acid was used to induce corrosion at three locations along Tendon 02.  The first six 

natural frequencies were used as an indicator of the global condition of the test specimens. 

 

Table 5.14 Variation of Natural Frequencies with Number of Wire Fractures 
Tendon 01 Tendon 02 

 
NF 1 NF 3 NF 13 NF 1 NF 6 NF 21 

1 15.2 15.1 14.2 16.4 15.2 13.2 

2 30.6 30.4 28.7 32.3 31.4 26.3 

3 46.8 46.4 43.8 48.9 47.5 40.4 

4 63.9 63.2 59.7 65.9 63.8 54.5 

5 83.3 83.3 76.7 83.8 80.9 69.5 

6 104.1 103.6 98.9 102.3 98.8 84.9 

Estimated 
number of 

wire breaks 
0 6 25 0 3 30 
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Twenty five wires breaks were induced in Tendon 01.  Tendon 01 was 

constructed with twelve strands which were stressed to 60% of GUTS.  The fatigue 

damage represented a 30% reduction in the area of steel at the south end of the specimen.  

The average difference in the first six natural frequencies of Tendon 01 before and after 

the fatigue test was 5% (Table 5.14). 

Thirty wire breaks were induced in Tendon 02.  Tendon 02 was constructed with 

nine strands, which were stressed to 80% of GUTS.  The total number of wire breaks 

represents about 25% of the total area of steel. The average difference in the first six 

natural frequencies of Tendon 02 before and after the exposure test was 15%. 
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Chapter 6: Evaluation of Initial Response of Test Specimens 

 

The primary objective of this dissertation is to extract information about the 

condition of an external tendon from the measured frequency response.  The approach is 

demonstrated in this chapter using the frequency response of the test specimens before 

damage was induced.  The most promising techniques are then used in Chapter 7 to 

evaluate the condition of the damaged specimens. 

Two analytical models are used to relate the measured frequencies to the 

unknown structural parameters:  the taut string model and the stiff string model.  These 

two models are presented in Section 6.1, and the difficulties associated with extracting 

the values of the structural parameters from the measured frequencies are discussed in 

Section 6.2.  The initial estimates of the structural parameters are given in Section 6.3. 

When extracting information from the measured frequencies, a unique solution is 

not obtained.  The optimization procedure used to identify the best solution is discussed 

in Section 6.4.  The initial responses of the cable specimens and the tendon specimens are 

evaluated in Sections 6.5 and 6.6, respectively. 

6.1 ANALYTICAL MODELS 

Two simple analytical models were used to evaluate the initial response of the test 

specimens. The specimens were assumed to be straight and restrained against rotation and 

displacement at both ends. In addition, all structural parameters were assumed to be 

constant along the length.  

The taut string model is often used to represent systems where the global behavior 

is dominated by the applied tension. The governing differential equation for a taut string 

is given in Eq. 6.1 and the corresponding natural frequencies are given in Eq. 6.2. 
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where  T = applied tension, m = mass per unit length, ℓ = length, f = natural frequency (Hz), and 
n = mode number 

 

Given the geometry and the cross-sectional dimensions of typical external tendons, 

the flexural stiffness of the tendon is also expected to influence the frequency response. 

The governing differential equation for the stiff string model is similar to Eq. 6.1, but 

includes the flexural stiffness of the cross section: 
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where E = elastic modulus and I = moment of inertia 

 

In 1948, Morse proposed an approximate solution to Eq. 6.3 for tendons that are 

restrained against translation and rotation at the ends.  The corresponding frequencies are 

given in Eq. 6.4. 
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The two models described above include a total of five structural parameters: 

tension (T), length (ℓ), mass per unit length (m), moment of inertia (I), and elastic 

modulus (E). Because the product EI appears in both Eq. 6.3 and Eq. 6.4, these two 

parameters will be considered as a single coupled parameter in the analyses discussed in 

this chapter.  The remainder of this chapter addresses methods for estimating the values 

of T, ℓ, m, and EI from the measured frequencies. 
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6.2 INVERSE PROBLEMS  

During design, the engineer uses a model and assumed values of the structural 

parameters to calculate the natural frequencies of the structural system.  For an external 

tendon, the engineer may use either Eq. 6.2 or Eq. 6.4 and values of T, ℓ, m, and EI to 

calculate as many frequencies as desired.  A unique solution is obtained for each 

frequency using a given model and a given set of parameters.  This is known as the 

forward problem (Figure 6.1). 

When evaluating an existing structure using the vibration signature approach, the 

engineer measures a discrete number of natural frequencies – the number depends on the 

limitations of the data acquisition system and the instrumentation.  The values of T, ℓ, m, 

and EI are then estimated from these frequencies.  This is known as an inverse problem.  

Unlike the forward problem, a unique combination of the structural parameters can not 

always be identified to match the measured frequencies.  There are several reasons for the 

lack of a unique solution:  (a) the boundary conditions in the field may be different from 

those assumed in the analyses, (b) deterioration of the tendon is not expected to be 

uniform along the entire length, and (c) measurement errors are included in the measured 

frequencies. 

In spite of these limitations, the measured frequencies do provide a basis for 

evaluating the condition of an external tendon.  The optimization scheme proposed in 

Section 6.4 is used for this purpose. 

 

Input parameters:  

(T, m, EI, and ℓ) 

Analytical models: 

Taut string model 

Stiff string model 

Measured response:  

(Natural frequencies) 

Analytical models: 

Taut string model 

Stiff string model 

Calculated response: 

(Natural frequencies) 

Estimated parameters:  

(T, m, EI, and ℓ) 

Inverse Problem: 

Forward Problem: 

 
Figure 6.1  Schematic Procedure of Forward and Inverse Problem 
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6.3 INITIAL ESTIMATES OF STRUCTURAL PARAMETERS 

Three parameters (T, ℓ, and m) are required to calculate the frequency of an 

external tendon using the taut string model and four parameters (T, ℓ, m, and EI) are 

required using the stiff string model.  The initial values of these four parameters were 

estimated using the geometry of the test specimens and assumed material properties.   

6.3.1 Length  

The length of the cable specimens was assumed to be the clear distance between 

the anchor heads (49 ft).  Because the degree of fixity provided by the concrete anchor 

blocks was not known, two lengths were considered for the tendon specimens: 32 ft, 

which represents the clear spacing between the anchor blocks, and 36.5 ft, which 

represents the overall length of the specimens, including the anchor heads. 

6.3.2 Tension 

The initial calculations were based on the target value of prestressing in the test 

specimens: 40% GUTS for the cable specimens (60 kip), 60% GUTS for Tendon 01 

(425 kip), and 80% GUTS for Tendon 02 (425 kip).  

6.3.3 Mass per Unit Length 

In calculating the mass per unit length of the test specimens, the unit weight of the 

grout was assumed to be 125 lb/ft3 and the unit weight of HDPE duct was assumed to be 

60 lb/ft3. The cross-sectional area of the grout was calculated from the nominal inner 

diameter of the duct, and the area of the longitudinal and transverse ribs was 

approximated by adding an additional 5% of the area.  Details of these calculations are 

given in Appendix N. 

During the autopsy, the weight of a short length of each specimen, except Cable 

01, was measured (Figure 6.2). The measured weight per unit length is compared with the 

calculated weight in Table 6.1.  The calculated weight of the cable specimens was 

approximately 6% percent less than the measured unit weight, and the calculated weight 



of the tendon specimens was within ±3% of the measured weight. These variations were 

assumed to be related to the size of the ribs.  The mass per unit length corresponding to 

the measured weight of the test specimens was used as the starting point for subsequent 

calculations. 

 

Table 6.1 Weight per Unit Length 

Cable Specimens Tendon Specimens  

Cable 02 Cable 03 Tendon 01 Tendon 02 

Measured unit weight (lb/ft) 10.10 10.24 13.23  11.82 

Calculated unit weight (lb/ft) 9.53 9.53 12.87  12.11 

Ratio 1.06 1.07 1.03 0.98 

 

 
Figure 6.2 Portion of Test Specimens used to Determine Weight per Unit Length 
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6.3.4 Flexural Stiffness 

The flexural stiffness is defined as the product of the transformed moment of 

inertia, I, and the modulus of elasticity, E. The cross-sectional dimensions at the anchor 

heads were assumed to represent the position of the strands along the entire length of the 

specimens (Figure 6.3).  



  
(a) Idealized section (Cable Specimens) (b) Actual section (Cable 03) 

  
(c) Idealized section (Tendon 01) (d) Actual section (Tendon 01) 

  
(e) Idealized section (Tendon 02) (f) Actual section (Tendon 02) 

Figure 6.3 Idealized and Observed Locations of Strands within Cross Sections 

Details of the calculations are given in Appendix N, and the values reported in 

Table 6.2 and Table 6.3 are based on a modulus of elasticity for the grout of 3,500 ksi 

and a modulus of elasticity of the strand of 29,400 ksi. All values are reported in terms 

of the modulus of the strand.  

The potential error in EI includes two components, one related to the arrangement 

of the strand and one related to the variation of material properties. Photographs taken of 

the cross sections during the autopsy, indicate that the locations of the strands did vary 

from the assumed positions (Figure 6.3). However, this observation was ignored in the 
 173
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analyses because the value of EI was assumed to be constant along the length of the 

specimens. The modulus of the grout was not measured in the experimental program, 

therefore, the value of 3,500 ksi was assumed and used in all calculations.  

 

Table 6.2 Transformed Moment of Inertia for the Idealized Cross Sections 

 Cable 
Specimens Tendon 01 Tendon 02 

I (in.4) 0.900 1.653 1.007 

 
Table 6.3 Flexural Stiffness 

 Cable 
Specimens Tendon 01 Tendon 02 

EI (kip-ft2) 183.8 346.8 212.4 

 

6.4 OPTIMIZATION OF SOLUTIONS 

As discussed in Section 6.2, a unique combination of structural parameters does 

not exist that corresponds exactly to the measured natural frequencies for each test 

specimen.  Therefore, an optimization procedure was used to identify the best 

combination of parameters for each specimen.  The ranges of each parameter considered 

in the analyses are summarized in Table 6.4. 

 

Table 6.4 Ranges of Structural Parameters Considered 
Parameter Range Considered 

T (kip) 0.9 To < T < 1.1 To; To = estimated tension  

ℓ (ft) Clear distance to overall length of specimens 

m (lb-sec2/ft2) 0.9 mo < m < 1.1 mo; mo = estimated mass per unit length 

EI (kip-ft2) 
Es = 29,400 ksi; 1000 ksi < Eg < 4000 ksi, and  

Io = transformed moment of inertia; 

 

For the tension, T, and mass per unit length, m, the feasible range was considered 

to be within ±10% of the assumed values in Section 6.3. The range of lengths considered 



was limited by the geometry of the test specimens. The minimum length was the clear 

distance between the anchor heads for the cable specimens and the clear distance between 

the anchor blocks for the tendon specimens.  The maximum length was taken as the 

distance between the outer faces of the anchor heads.  The flexural stiffness, EI, was 

calculated using the measured modulus of the strand and an elastic modulus of the grout 

that varied between 1000 and 4000 ksi. The transformed moment of inertia was 

calculated using the positions of the strands at the anchor head.  Variations in the 

locations of the strands within the cross section were not considered. 

The range of each parameter was divided by 10, and the first six natural 

frequencies were calculated for each combination of parameters. Therefore, 103 

combinations of parameters were used with the taut string model and 104 combinations of 

parameters were used with the stiff string model. 

For each combination of parameters, the error between the frequency of the ith 

mode calculated using either Eq. 6.2 or Eq. 6.4 and the measured frequency for mode i, 

 was calculated using Eq. 6.5. iΩ

 

, ,

,

c i o i
i

o i

f f
f
−

Ω =  (Eq. 6.5) 

where   = error associated with mode i, iΩ ,c if  = calculated frequency for mode i, 
and ,o if  = measured frequency for mode i 

 

The resulting values of iΩ  were both positive and negative, because the 

calculated frequencies exceeded the measured frequencies in some cases and the 

measured frequencies exceeded the calculated frequencies in other cases.  In order to 

determine the optimal combination of parameters, the total error, totΩ  was calculated as 

the sum of the square of the modal error terms, as indicated in Eq. 6.6.  Each of the 

modes was weighted equally when calculating the total error. 
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where   = total error for combination of parameters totΩ
 

The combination of parameters corresponding to the minimum value of total error 

was then selected as the optimal combination.  As discussed in Section 6.5 and Section 

6.6, the values of the optimal parameters varied depending on the analytical model used 

to calculate the natural frequencies – taut string model using Eq. 6.2 or stiff string model 

using Eq. 6.4.  The sensitivity of the error to the choice of parameters is also addressed in 

these sections. 

6.5 RESPONSE OF CABLE SPECIMENS 

6.5.1 Initial Calculations 

For the first set of analyses, the natural frequencies of the cable specimens were 

calculated using the values of the structural parameters discussed in Section 6.3 using 

both the taut string and stiff string idealizations. The measured frequencies for the lowest 

six modes of vibration before the start of the fatigue tests are summarized in Table 6.5, as 

are the calculated frequencies. 
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Table 6.5 Natural Frequencies of Cable Specimens Corresponding 
to Initial Set of Parameters 

Measured Frequencies (Hz) Calculated 
Frequencies (Hz) 

Mode 
Cable 01

NF 0 
Cable 02

NF 0 
Cable 03

NF 0 
Taut 

String 
Stiff 

String 

1 4.6 4.4 4.3 4.5 4.8 

2 9.4 8.9 8.8 8.9 9.8 

3 14.5 13.6 13.7 13.4 15.1 

4 20.0 18.6 19.0 17.8 20.9 

5 25.6 23.5 24.7 22.3 27.4 

6 32.2 29.6 31.6 26.8 34.8 

Taut string 0.0659 0.0141 0.0393   Total 
Error Stiff string 0.0189 0.1043 0.0691   

 

The measured natural frequencies for Cable 02 and Cable 03 for the first three 

modes were similar to the values calculated using the taut string model; however, the 

measured frequencies were higher than the calculated frequencies for the higher modes. 

The recorded natural frequencies for Cable 01 exceeded those calculated using the taut 

string model for all six modes. The calculated frequencies using the stiff string model 

exceeded the measured frequencies for all six modes in all three specimens. 

The associated modal errors are displayed in Figure 6.4. The calculated 

frequencies vary considerably from the measured frequencies.  The modal errors 

calculated using the taut string model varied as the mode number increased for all three 

cable specimens. In contrast, comparison, the modal errors calculated using the stiff 

model were relatively constant, except the fifth and sixth modes, which had experienced 

higher modal errors.  The relative uniformity of the modal errors calculated using the stiff 

string model indicates that this model is likely to provide a better match to the measured 

frequencies when the optimized parameters are used in the analyses.  

 



-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

1 2 3 4 5 6

Mode

M
od

al
 E

rr
or

 (%
)

cable 01
cable 02
cable 03

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6
Mode

M
od

al
 E

rr
or

 (%
)

cable 01
cable 02
cable 03

(a) Taut string model (b) Stiff string model 

Figure 6.4 Modal Errors Corresponding to Initial Set of Parameters 
for Cable Specimens  

6.5.2 Optimized Parameters 

The ranges of the parameters used to minimize the total error between the 

measured and calculated frequencies are listed in Table 6.6, and the combinations of 

parameters corresponding to the minimum total error are reported in Table 6.7.  The taut 

string and the stiff string models were used independently, and results for both are 

reported. 

 

Table 6.6 Ranges of Parameters Considered in Evaluation of Cable Specimens 

Parameter Initial 
Estimate 

Range 
Considered 

T (kip) 60 55 to 65 

ℓ (ft) 49 49 to 50 

m (lb-sec2/ft2) 0.32 0.29 to 0.35 

EI (kip-ft2) 183.8 80 to 200 
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Table 6.7 Parameters Corresponding to Minimum Total Error for Cable Specimens 

Cable 01 Cable 02 Cable 03 
Parameter Taut 

string 
Stiff 

string 
Taut 
string 

Stiff 
string 

Taut 
string 

Stiff 
string 

T (kip) 65 63 64 55 63 55 

ℓ (ft) 49 49.1 49.1 49.3 49.5 49.8 

m (lb-sec2/ft2) 0.290 0.350 0.314 0.326 0.296 0.350 

EI (kip-ft2) - 152 - 92 - 188 

Total Error 0.01700 0.00021 0.00855 0.00019 0.02776 0.00013 

 

In many cases, the optimal value of a parameter was near the limits of the range 

considered. However, the optimal values were not the same for the two analytical models. 

For example, the tension corresponding to the minimum total error for all three 

specimens was near the upper limit of 65 kip using the taut string model, while the 

tension was near the lower limit of 55 kip for Cable 02 and Cable 03 using the stiff spring 

model. The total errors reported in Table 6.7 are significantly less than those calculated 

using the initial set of parameters (Table 6.5), and the total errors computed using the stiff 

string model were much less than those using the taut string model.  

The modal errors corresponding to the optimal set of parameters are plotted in 

Figure 6.5 for both analytical models.  The modal errors were also significantly less using 

the stiff string model than the taut string model for all three cable specimens. As a result, 

the stiff sting model was considered to provide a better representation of the frequency 

response of the cable specimens than the taut string model. This suggests that the 

behavior of the cable specimens was influenced by bending, in addition to the applied 

tension. The measured natural frequencies are compared to the calculated frequencies 

using the optimized parameters in Table 6.8. The calculated frequencies are nearly 

identical to the recorded frequencies. This comparison demonstrates that the optimization 

scheme using the stiff string model can reproduce effectively the natural frequencies of 

the cable specimens before the specimens experienced damage. 
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(a) Taut string model (b) Stiff string model 

Figure 6.5  Distribution of Modal Errors Corresponding to Minimum Total Error for 
Cable Specimens 

 

Table 6.8  Comparison of Measured Natural and Calculated Frequencies  
Using Optimized Parameters for Cable Specimens 

Cable 01 Cable 02 Cable 03 
Mode Measured 

Frequencies 
Calculated

Frequencies
Measured 

Frequencies
Calculated

Frequencies
Measured 

Frequencies 
Calculated

Frequencies
1 4.6 4.6 4.4 4.4 4.3 4.3 

2 9.4 9.4 8.9 8.9 8.8 8.8 

3 14.5 14.4 13.6 13.6 13.7 13.6 

4 20.0 19.8 18.6 18.5 19.0 18.9 

5 25.6 25.7 23.5 23.7 24.7 24.9 

6 32.2 32.3 29.6 29.4 31.6 31.6 

 

The sensitivity of the error to each parameter included in the analytical models is 

shown in Figure 6.6 and Figure 6.7 for Cable 02 for the taut string and stiff string models, 

respectively. One parameter is varied in each figure, while the values of the other 

parameters correspond to those listed in Table 6.7. Similar plots for Cable 01 and Cable 

03 are given in Appendix O. The error was sensitive to variations in the tension, mass per 

unit length, and the flexural stiffness, but was almost independent of variations in the 

length. This is not surprising, because the range of lengths considered in the analyses was 

the smallest of the four parameters due to the geometry of the test specimens. 
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(c) Mass  

Figure 6.6 Sensitivity of Total Error to Structural Parameters using 
Taut String Model (Cable 02) 

 

While specific combinations of structural parameters corresponded to the 

minimum total error between the measured and calculated natural frequencies for each 

test specimen, it is important to note that the values of the parameters do not necessarily 

have physical significance. For example, all three test specimens were constructed using 

the same procedures using the same hardware; therefore, it is reasonable to assume that 

the effective length of all specimens is the same. However, variations in the effective 

lengths may be observed in Table 6.7. 
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Figure 6.7 Sensitivity of Total Error to Structural Parameters using 
Stiff String Model (Cable 02) 

 

The simplicity of the analytical models and total error function limit the ability to 

reproduce the measured response of the test specimens completely. Therefore, a number 

of combinations in the structural parameters results in an acceptable margin of error. The 

optimization scheme used in this chapter was intended to assess the possible errors due to 

variations in the structural parameters, rather than evaluating the physical meaning of 

each of the structural parameters. 
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6.6 RESPONSE OF TENDON SPECIMENS 

6.6.1 Initial Calculations 

The tendon specimens were also analyzed using the initial values of the structural 

parameters discussed in Section  and both analytical models. As discussed, two 

lengths were used in the analyses. The shorter length corresponds to the clear distance 

between the concrete anchor blocks, while the longer length corresponds to the distance 

between the outside faces of the anchor heads. The measured and calculated frequencies 

for the first six modes of vibration are reported in 

6.3

Table 6.9 for Tendon 01 and Table 6.10 

for Tendon 02. 

 

Table 6.9 Natural Frequencies for Tendon 01 

Calculated Frequencies (Hz) Measured 
Frequencies 

(Hz) Taut String Stiff String Mode 

NF 0 32 ft 36.5 ft 32 ft 36.5 ft 

1 15.4 15.9 13.9 16.9 14.7 

2 31.0 31.8 27.9 34.2 29.6 

3 47.4 47.7 41.8 52.2 45.1 

4 64.4 63.6 55.7 71.3 61.3 

5 84.8 79.4 69.6 92.0 78.6 

6 105.7 95.3 83.6 114.5 97.0 

Total 
Error 

- 0.016 0.128 0.056 0.021 

 



 

Table 6.10 Natural Frequencies for Tendon 02 

Calculated Frequencies (Hz) Measured 
Frequencies 

(Hz) Taut String Stiff String Mode 

NF 0 32 ft 36.5 ft 32 ft 36.5 ft 

1 15.9 16.7 14.7 17.6 15.6 

2 31.7 33.5 29.4 35.5 31.3 

3 48.5 50.2 44.0 53.8 47.4 

4 65.8 67.0 58.7 72.9 64.0 

5 83.3 83.7 73.4 93.0 81.3 

6 102.7 100.5 88.1 114.2 99.4 

Total 
Error 

- 0.0074 0.0686 0.0717 0.0042 
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Figure 6.8 Modal Errors Corresponding to Initial Set of Parameters 
 for Tendon Specimens

 

The calculated frequencies were sensitive to the length used in the analyses. In 

general, the measured frequencies were between the two calculated values, however, the 

measured frequencies tended be higher than the range of calculated frequencies when the 

taut string model was used to evaluate the frequencies of the higher modes. The tendon 

specimens exhibited trends similar to those observed for the cable specimens:  modal 
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errors were nearly constant using the stiff string model, but varied by mode using the taut 

string model (Figure 6.8).  These trends indicate that the behavior of the tendon 

specimens will be better represented by the stiff string model.  

6.6.2 Optimized Parameters 

As before, the values of the structural parameters corresponding to the minimum 

total error between the measured and calculated frequencies were estimated using the two 

analytical models. The ranges of each parameter considered in the optimization are 

summarized in Table 6.11 and Table 6.12 for Tendon 01 and Tendon 02, respectively.  

The combinations of parameters corresponding to the minimum total error are 

summarized in Table 6.13.  Results are reported for both the taut string and stiff string 

models. 

 

Table 6.11 Ranges of Parameters Considered in Evaluation of Tendon 01 

Parameter Initial 
Estimate 

Range 
Considered 

T (kip) 425 400 to 460 

ℓ (ft) 32 32 to 36 

m (lb-sec2/ft2) 0.41 0.37 to 0.45 

EI (kip-ft2) 337.4 310 to 350 

 

Table 6.12 Ranges of Parameters Considered in Evaluation of Tendon 02 

Parameter Initial 
Estimate 

Range 
Considered 

T (kip) 425 400 to 460 

ℓ (ft) 32 32 to 36 

m (lb-sec2/ft2) 0.37 0.33 to 0.41 

EI (kip-ft2) 212.4 160 to 220 

 



 

Table 6.13 Parameters Corresponding to Minimum Total Error for Tendon Specimens 

Tendon 01 Tendon 02 
Parameter Taut 

string 
Stiff 

string 
Taut 
string 

Stiff 
string 

T (kip) 436 400 448 406 

ℓ (ft) 33.6 32.8 33.6 33.2 

m (lb-sec2/ft2) 0.370 0.442 0.370 0.402 

EI (kip-ft2) - 350 - 220 

Total Error 0.01384 0.00039 0.00465 0.00012 

 

 

As before, the optimal value of each parameter was often near on of the limits of 

the range considered, and the optimal values parameters were not the same for the two 

models.  The frequencies calculated using the optimized parameters and the stiff string 

model were closer to the measured natural frequencies of the tendon specimens than 

those calculated using the taut string model (Figure 6.9).  
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Figure 6.9 Distribution of Modal Errors Corresponding to Minimum Total Error for 
Tendon Specimens 

 

The sensitivity of the total error to each parameter is shown in Figure 6.10 and 

Figure 6.11 for Tendon 01 for the taut string and stiff spring models, respectively. Similar 
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plots for Tendon 02 are given in Appendix O. The error was most sensitive to the length 

of the specimen, ℓ, and the mass per unit length, m, and least sensitive to the flexural 

stiffness, EI.  Surprisingly, the total error was not as sensitive to the tension, T, as ℓ or m 

using either model. 
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Figure 6.10 Sensitivity of Total Error to Structural Parameters using 
Taut String Model (Tendon 01) 

 

In all cases, the minimum total error corresponded to a length that was between 

the two extreme values. This indicates that the tendon specimens were not fixed at the 

inner face of the anchor block, but that the equivalent point of fixity was within the 

anchor block. This complicates the analysis of the tendon specimens, compared with the 
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cable specimens, and represents an issue that must be addressed when evaluating external 

tendons in the field. 
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Figure 6.11 Sensitivity of Total Error to Structural Parameters using 
Stiff String Model (Tendon 01) 

 

Larger variations in the flexural stiffness of the tendon specimens than those 

indicated in Table 6.11 are expected due to the observed differences between the 

locations of the strand in the idealized cross section and the actual locations observed 

during the autopsy (Figure 6.3). As shown in Figure 6.12 and Figure 6.13, the values of 

flexural stiffness change considerably when alternate arrangements of strand were 

considered. The fact that the total error was not sensitive to variations in the flexural 

stiffness implies that variations in the placement of the strands within the cross section of 
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the tendon do not influence the natural frequencies significantly. This is convenient, 

because the locations of the strands are expected to vary along the length and it is 

impossible to determine the geometry of the cross section in a nondestructive manner. 

 

 
EI = 337.4 kip-ft2 EI = 197.8 kip-ft2 EI = 176.5 kip-ft2

(a) Idealized section (b) Congested section -1 (c) Congested section -2 

Figure 6.12 Possible Arrangements of Strands in Tendon 01 

 

 

EI = 205.7 kip-ft2 EI = 161.9 kip-ft2 EI = 120.7 kip-ft2

(a) Idealized section (b) Congested section -1 (c) Congested section -2 

Figure 6.13 Possible Arrangements of Strands in Tendon 02 

 

The measured natural frequencies are compared with the frequencies calculated 

using the optimized parameters in Table 6.14. The calculated frequencies are nearly 

identical to the measured frequencies. This comparison demonstrates that the 

optimization scheme using the stiff string model effectively reproduces the natural 

frequencies of the tendon specimens before damage has occurred. 
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Table 6.14 Comparison of Measured Natural and Calculated Frequencies  
Using Optimized Parameters for Tendon Specimens  

Tendon 01 Tendon 02 
Mode Measured 

Frequencies 
Calculated 

Frequencies 
Measured 

Frequencies 
Calculated 

Frequencies 
1 15.4 15.4 15.9 15.9 
2 31.0 31.2 31.7 32.0 
3 47.4 47.7 48.5 48.5 
4 64.4 65.2 65.8 65.7 
5 84.8 84.2 83.3 83.8 
6 105.7 104.8 102.7 102.9 

 

6.6.3 Presence of Multiple Peaks in Frequency Response 

The response of the tendon specimens included multiple peaks for several modes 

of vibration (Figure 6.14). In most cases, the difference between the peaks was less than 

5% of the frequency corresponding to the predominant vibration frequency.  

The measured frequencies for each peak are reported in Table 6.15, where f1 

refers to the lower frequency and f2 refers to the higher frequency for each mode.  These 

values are compared with the frequencies calculated using the stiff string model.  Three 

values of length were used in the calculations: ℓmax refers to the maximum considered 

length of 36.5 ft, ℓmin refers to the minimum considered length of 32 ft, and ℓopt refers to 

the length corresponding to the minimum total error (32.8 ft for Tendon 01 and 33.2 ft for 

Tendon 02).  The values of EI, m, and T corresponding to the minimum total error were 

used in all calculations. 

The measured frequencies for all peaks were bounded by the frequencies 

calculated using the extreme values of the specimen length. In most cases, the measured 

frequency of the high-amplitude peak was similar to that calculated using the length 

corresponding to the minimum error. This is expected because the frequency with the 

higher amplitude peak was used in to identify the optimized structural parameters.  
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Figure 6.14 Presence of Multiple Peaks in Frequency Response of Tendon Specimens 

 

Table 6.15 Frequencies of Multiple Peaks Observed for Tendon Specimens 

Tendon 01 Tendon 02 
Measured 

Frequencies (Hz) 
Calculated 

Frequencies (Hz) 
Measured 

Frequencies (Hz) 
Calculated 

Frequencies (Hz) 
Mode 

f1 f2 ℓmax ℓopt ℓmin f1 f2 ℓmax ℓopt ℓmin

2 30.0* - 28.7 31.2 32.1 31.7* 33.6 28.9 32.0 33.2 

3 47.4* 48.0 42.3 47.7 49.0 48.8* 49.9 43.8 48.5 50.5 

4 64.4* 65.3 57.6 65.2 67.1 65.8* 67.7 59.1 65.7 68.5 

5 83.1 84.8* 73.9 84.2 86.8 84.0* 87.2 75.2 83.8 87.4 

6 103.3 105.7* 91.5 104.8 108.2 102.8* 107.9 92.0 102.9 107.6 

*higher amplitude response 
 

Based on these analyses, the presence of the dual peaks appears to be caused by 

the boundary conditions. The tendons are able to vibrate within the blocks, although most 

of the vibration occurs along the free length.  The presence of closely-spaced modes of 

vibration is also evident in the time-domain response, as the beating phenomenon may be 

observed in Figure 6.15. 
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The boundary conditions may be even more complex in existing bridges, because 

external tendons are restrained by anchor blocks but pass through deviators along the 

length. In Chapter 2, it was assumed that each section of an external tendon could be 

evaluated separately, but the presence of dual peaks in the measured response of tendons 

in the Mid-Bay Bridge indicate that further consideration may be required for actual 

boundary conditions (Figure 6.16). 
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Figure 6.15 Time-Domain Response of Tendon 01 

 

 
Figure 6.16 Measured Frequency Response of External Tendons in Mid-Bay Bridge 

(Sagüés et al 2000) 
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6.7 SUMMARY  

A numerical scheme was developed to estimate the values of key structural 

parameters from the measured frequency response of the cable and tendon specimens.  

Two simple analytical models were selected to represent the frequency response of the 

five test specimens before damage was induced. The stiff string model provided a better 

representation of the measured frequencies in all cases.  

The values of the parameters corresponding to the minimum error and the 

sensitivity of the error to these parameters varied with the type of specimen. The cable 

specimens were best represented using a length close to the clear distance between the 

anchor heads and the results were most sensitive to changes in the applied tension, T, and 

the flexural stiffness, EI. In contrast, the tendon specimens were best represented using an 

effective length between the clear spacing between anchor blocks and the overall length 

of the test specimens. The results for the tendon specimens were most sensitive to the 

length of the specimen, ℓ, and the mass per unit length, m.  The results were nearly 

independent of the flexural stiffness, EI.   

The presence of dual peaks in the frequency response of the tendon specimens 

was attributed to vibration of the tendon within the concrete anchor blocks. Because the 

tendon was not fixed at the inner face of the anchor block, the restraint at the end of the 

specimens was distributed along the length of the anchor blocks. The flexibility of the 

boundaries permitted the specimens to vibrate in multiple modes within a narrow 

frequency range. This phenomenon has been observed in the measured response of 

external tendons in existing bridges and the frequencies may be bounded using the clear 

length of the section of tendon considered and the overall length.  



Chapter 7: Evaluation of Damaged Specimens using 
Vibration Signatures  

 

The objective of this chapter is to summarize the observed response of the test 

specimens as damage accumulated and correlate the measured natural frequencies to a 

loss in the level of prestress.  The damage induced during the investigation was intended 

to simulate deterioration in existing bridges due to corrosion.  Accumulated damage in 

the form of wire breaks and grout cracking caused reductions in the measured natural 

frequencies of the test specimens. 

Observations from the entire experimental program are summarized in Section 7.1.  

The stiff string model is used to evaluate the sensitivity of changes in the natural 

frequencies to changes in the tension and flexural stiffness in Section 7.2.  The final set of 

frequencies from Cable 02, Cable 03, and Tendon 01 are evaluated in Section 7.3 to 

determine the best approach for extracting the residual tension from the measured 

frequency response.  All sets of frequency data are used in Section 7.4 to track variations 

in tension and flexural stiffness with increasing damage.  Several issues that may limit the 

application of the vibration technique for evaluating the condition of external tendons are 

summarized in Section 7.5. 

7.1 MEASURED RESPONSE OF SPECIMENS  

In this section, the frequency reduction ratio, nβ , is used as an indicator of 

damage:   

n,i
n

n,o

f
f

β =  (Eq. 7.1) 

where  nβ  = frequency reduction ratio for mode n, n,if  = measured frequency of mode n during 

free-vibration test i, and n,of  = measured frequency of mode n during initial free-vibration 

test. 
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Data from all six modes of vibration are used to determine the frequency reduction ratios.  

In this section, the frequency reduction ratios are compared with the number of wire 

breaks detected by the acoustic sensors and the condition of the test specimens during the 

specimen autopsies. 

7.1.1 Cable Specimens 

The frequency reduction ratios for Cable 01 are shown in Figure 7.1. The natural 

frequencies were measured until the eighth wire break was reported by the acoustic 

sensors. The first two wire breaks occurred at midspan and subsequent breaks occurred at 

the north end of the specimen. The natural frequencies, with the exception of the first 

mode, decreased gradually until three wire breaks were reported.  The frequency of the 

first mode was essentially constant during these free-vibration tests. 

All six natural frequencies dropped in the next free-vibration test, after the eighth 

wire break was reported. The frequency reduction ratios varied between 91 and 92% for 

all modes during NF4.  
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Figure 7.1 Frequency Reduction Ratio for Cable 01 
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The frequency reduction ratios for Cable 02 are shown in Figure 7.2. The natural 

frequencies were measured until the sixth wire break was reported by acoustic sensors.  

From the autopsy, however, it is known that all seven wires in the top strand had 

fractured near the north anchor head at the conclusion of the fatigue test (one wire broke 

in two locations). 

The natural frequencies did not vary appreciably until NF5.  As damage continued 

to accumulate, the frequency reduction ratios decreased for most modes with the lower 

modes exhibiting larger variations.  However, the frequency reduction ratios actually 

increased for modes 5 and 6 between NF4 and NF7.  At the conclusion of the fatigue test, 

the frequency reduction ratios varied from 89 to 92%.  
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Figure 7.2  Frequency Reduction Ratios for Cable 02 

The frequency reduction ratios for Cable 03 are shown in Figure 7.3. In the first 

few free-vibration tests, the frequencies of the higher modes changed more than the lower 

modes.  This trend was reversed in NF3, and the lower modes exhibited lower frequency 

reduction ratios in the later tests. 
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Figure 7.3  Frequency Reduction Ratio for Cable 03 

During the autopsy, twelve wire breaks were observed at the north end of 

Cable 03.  All seven wires in the bottom strand had fractured and three wires in the top 

strand had fractured.  (Two wires in the bottom strand broke at two locations.)  The 

minimum frequency reduction ratios varied between 80 and 86% at the conclusion of the 

fatigue test. 

The changes in the frequency reduction ratios were minor – less than 5% – after 

the first two or three wire breaks were detected in the cable specimens.  However, as the 

number of wire breaks increased, the rate of reduction in the frequency reduction ratios 

increased.  The lower modes seemed to be more sensitive to damage than the higher 

modes. 

7.1.2 Tendon Specimens 

The variation in the frequency reduction ratio for Tendon 01 is shown in Figure 

7.4. The natural frequencies in all six modes decreased gradually as damage accumulated 

in the tendon; however, the maximum variation in most modes was less than 6%. The 

natural frequencies for Tendon 01 were not as sensitive to individual wire breaks as the 

cable specimens.  
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Figure 7.4  Frequency Reduction Ratios for Tendon 01 

At the conclusion of the fatigue tests for Tendon 01, 25 wire breaks were 

observed approximately 2 ft from the north anchor head.  All seven wires had fractured in 

three strands near the bottom of the cross section.  Two other strands, also near the 

bottom, experienced two wire breaks each. 

The frequency reduction ratio for Tendon 02 is shown in Figure 7.5.  Acoustic 

sensors were not used to monitor the response of this specimen, so the number of wire 

breaks is not indicated.  Four regions of response may be observed in Figure 7.5: 

(1) Between NF1 and NF5, the frequency reduction ratios varied by less than 2%.  The 

frequency of the fundamental mode of vibration increased slightly, while the other 

five frequencies decreased. 

(2) An appreciable drop in the frequency reduction ratios was observed during NF6.  The 

first wire breaks had been observed in Void 1 immediately before this test.  The 

frequency reduction ratio for the first mode decreased to 93%, while the ratios for the 

other five modes were approximately 97%.  The frequency reduction ratios remained 

essentially constant through NF15.  The observed variations in frequency during this 

period were likely due to changes in temperature. 
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Figure 7.5  Frequency Reduction Ratios for Tendon 02 

(3) All six frequency reduction ratios dropped again during NF16.  The first wire break 

had been observed in Void 2 immediately before this test.  The frequency reduction 

ratio for the first mode dropped to 91%, while the ratios for the five higher modes 

were approximately 94%. 

(4) All six frequency reduction ratios dropped again during NF19.  The first wire break 

was observed in Void 3 immediately before this test, and the change in frequencies 

was the largest observed.  The frequency reduction ratios ranged from 82 to 85%.  

Another decrease in the frequency reduction ratios was observed during NF21, but the 

change was not as pronounced. 

At the conclusion of the accelerated corrosion test, the frequency reduction ratios 

varied from 80 to 83% for Tendon 02.  The lower modes experienced larger changes in 

frequencies than the higher modes. 

The tendon specimens exhibited many of the same trends as the cable specimens.  

In particular, the lower modes of vibration were more sensitive to damage than the higher 

modes. 
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7.2 CALCULATED SENSITIVITY OF NATURAL FREQUENCIES TO CHANGES IN TENSION 
AND FLEXURAL STIFFNESS 

As discussed in Chapter 6, the stiff string model provided a better representation 

of the initial response of all five test specimens than the taut string model.  Therefore, the 

approximate solution proposed by Morse (1948) was used to relate damage in the test 

specimens to the observed changes in the natural frequencies.  Two sets of analyses are 

presented in this section.  In both cases, the natural frequencies were calculated using Eq. 

6.4 and the influence of damage was simulated by changing the value of a single 

parameter: either the tension, T, or the flexural stiffness, EI. 

In the first set of analyses, the values of mass per unit length, m, length, ℓ, and EI 

were set equal to those corresponding to the minimum total error for the undamaged 

specimens (Table 6.7 and Table 6.13) and were held constant in the analyses.  The value 

of T was varied from 1.0Ti,opt to 0.5Ti,opt, where Ti,opt is the tension corresponding to the 

minimum total error for the undamaged specimens.  In the second set of analyses, the 

values of m, ℓ, and T were held constant, while the value of EI was varied from 1.0EIi,opt 

to 0.5 EIi,opt, where EIi,opt is the flexural stiffness corresponding to the minimum total 

error in the undamaged specimens.  The results of the analyses for Cable 02 and Tendon 

01 are presented in Figure 7.6 and Figure 7.7, respectively, and are considered to be 

representative of all five specimens. 

When damage was simulated by decreasing the tension, the lower frequencies 

changed more than the higher frequencies.  In contrast, when damage was simulated by 

decreasing the flexural stiffness, the higher frequencies changed more than the lower 

frequencies.  In addition, the frequency reduction ratios were more sensitive to changes in 

T than in EI.  A 50% reduction in T caused 25 to 30% reductions in the natural 

frequencies, while a 50% reduction in EI caused 1 to 11% reductions in the natural 

frequencies. 
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(b) Variations in Flexural Stiffness 

Figure 7.7  Sensitivity of Frequency Reduction Ratios 
to Changes in Tension and Flexural Stiffness for Tendon 01 

 202



 203

It should be noted that varying the values of individual parameters is an over-

simplification of the manner in which damage accumulated in the test specimens.  

Changes in the flexural stiffness are expected to be located at the ends and near the point 

of the applied load, rather than being uniformly distributed along the length of the 

specimen.  In addition, the presence of a wire break does not necessarily correspond to a 

loss in tension.  As discussed in Chapter 3, the tensile stresses are redistributed to 

adjacent wires after wire fractures due to the spiral configuration of the strand.   

The general trends exhibited in Figure 7.6 and Figure 7.7, however, are consistent 

with those observed in the measured data discussed in Section 7.1.  For low levels of 

damage, the higher modes tended to exhibit lower frequency reduction ratios.  This trend 

is consistent with a reduction in the flexural stiffness.  As the number of wire breaks 

increased, the lower modes exhibited lower frequency reduction ratios, as is expected 

with a reduction in the tension. 

7.3 ESTIMATED STRUCTURAL PARAMETERS AT CONCLUSION OF FATIGUE TESTS  

It is known from the results of the autopsies that each test specimen experienced 

significant damage during the fatigue or accelerated corrosion tests.  The optimization 

procedures developed in Chapter 6 are used in this section to evaluate the residual tension 

in three of the test specimens:  Cable 02, Cable 03, and Tendon 01.  Cable 01 was not 

considered in this section because the specimen collapsed during the fatigue tests, and 

therefore, the residual tension was zero.  In addition, the extent of damage at the time of 

the last free-vibration test was not known.  Tendon 02 was also not considered in this 

section because the actual distribution of damage along the length of each strand was not 

known, even after the autopsy.  

The observed conditions of the test specimens at the conclusion of the fatigue 

tests are summarized in Table 7.1.  The estimated residual tension force, Tmin, for each 

specimen is also listed as a multiple of the initial tension, To.  In these calculations, all 

seven wires in the strand were assumed to have equal cross-sectional areas, the tensile 

stress was assumed to be uniformly distributed among the intact wires in the strand, the 



tensile strength of the strand was taken as 270 ksi, and the yield strength of the strand was 

taken as 245 ksi.  Given the initial level of prestress, individual strands in all three 

specimens were expected to be able to carry the initial tension force without yielding if 

one or two wires were broken (Table 7.2).  If a strand experienced three wire breaks, the 

average stress was close to the yield strength of the strand for the cable specimens and 

fracture of the remaining wires in the strand was expected for Tendon 01.  Therefore, at 

the conclusion of the fatigue tests, Cable 02 was estimated to be carrying 50% of its 

initial tension and Tendon 01 was estimated to be carrying 75% of its initial tension.  

Because the calculated average stress in the top strand of Cable 03 was close to the yield 

strength of the strand, the residual tension force was expected to be lower in Cable 03 

than Cable 02, but a quantitative estimate was not made. 

Table 7.1  Condition of Test Specimens at Conclusion of Fatigue Tests 

Estimated Residual 
Properties Specimen 

Final 
Frequency 

Test 
Observed Damage 

Tmin minI  

Cable 02 NF8 Top strand:  all 7 wires fractured 
Bottom strand:  no damage o. T0 5  o. I0 9  

Cable 03 NF4 Top strand:  3 wires fractured 
Bottom strand:  all 7 wires fractured 

< o. T0 5  < o. I0 9  

Tendon 01 NF13 

All 7 wires fractured in 3 strands at bottom 
of cross section.  Two other strands 

experienced 2 wire breaks per strand.  No 
damage in remaining 7 strands. 

o. T0 75  o. I0 55  

Table 7.2  Calculated Stress in Strand with Broken Wires 
Initial Prestress Residual Prestress (ksi) 

Specimen 
% GUTS ksi 1 Broken Wire 2 Broken Wires 3 Broken Wires

Cable Specimens 50 135 158 189 236 

Tendon 01 60 162 189 227 * 

Tendon 02 80 216 252 * * 

*  Calculated stress exceeds fpu. 
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Using the reduced number of strands resisting tension at the conclusion of the 

fatigue tests, the transformed moment of inertia at the north end of the test specimens was 

calculated using the procedures described in Appendix N.  These values are reported as 

Imin in Table 7.1.  

An approach is developed in this section to estimate the values of the structural 

parameters that best match the measured frequency response at the conclusion of the 

fatigue tests.  The physical significance of these parameters is also evaluated.  Frequency 

data from all free-vibration tests of all specimens are evaluated using the same approach 

in Section 7.4.  

7.3.1 Multi-Variable Optimization 

As discussed in Chapter 6, the stiff string model provided a better match to the 

measured frequency response of the undamaged test specimens than the taut string model.  

Therefore, only the stiff string model is considered in this section.  Four parameters, T, EI, 

ℓ, and m, are needed to calculate the natural frequencies of an external tendon using the 

stiff string model.  Similarly to Chapter 6, the best solution is taken as the set of 

parameters corresponding to the minimum total error between the measured and 

calculated natural frequencies, , which is defined in Eq. 6.6.  It is expected that the 

minimum total error for the damaged specimens will exceed the minimum total error for 

the undamaged test specimens, because the stiff string model assumes that all structural 

properties are uniformly distributed along the entire length of the tendon.  However, the 

damage in the test specimens subjected to fatigue loads was concentrated near the north 

end.  In spite of these limitations, the stiff string model was used to evaluate the damaged 

test specimens.  

Ωtot

Three different approaches were used to determine the optimal combination of 

parameters from the natural frequencies recorded at the end of the fatigue tests.  In the 

following discussion, the term “initial set of parameters” refers to the values of tension, 

flexural stiffness, specimen length, and mass per unit length corresponding to the 

minimum total error for the undamaged specimens.  The notation Ti,opt, EIi,opt, ℓi,opt, and 
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mi,opt will be used to refer to these values, which are reported in Table 6.7 and Table 6.13.  

The term “updated set of parameters” refers to the values of tension, flexural stiffness, 

specimen length, and mass per unit length corresponding to the minimum total error for 

the specimens at the conclusion of the fatigue tests.  The notation Tf,opt, EIf,opt, ℓf,opt, and 

mf,opt will be used to refer to these values. 
In the first series of analyses, the initial values were used for EI, ℓ, and m , and 

only the value of T was updated to reflect the fatigue damage.  This analysis option is 

called a single-variable optimization.  In the second series of analyses, the initial values 

were used for ℓ and m, while the values of both T and EI were updated.  This analysis 

option is called a two-variable optimization.  In the third series of analyses, the values of 

all four parameters were updated.  While the values of ℓ and m did not change during the 

fatigue tests, this four-variable optimization was included for completeness. 

The parameters used in the three series of analyses are summarized in Table 7.3, 

and the results are discussed in the following sections.  In the analyses, the ranges of ℓ 

and m considered were the same as those used in Chapter 6 for the undamaged specimens.  

However, no limits were placed on the values of T and EI. 

Table 7.3 Parameters used in Three Series of Analyses 

Optimization Approach 
Parameters 

Single 
Variable 

Two 
Variable 

Four 
Variable 

T  Updated Updated Updated 

EI  Initial Updated Updated 

l  Initial Initial Updated 

m  Initial Initial Updated 
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7.3.2 Cable 02 

The results of the three sets of analyses for Cable 02 are summarized in Table 7.4. 

The total error decreased as the number of variables considered in the analyses increased. 

The values of residual tension, Tf,opt, ranged from 40 to 45 kip.  These values are 

considerably higher than the estimated value (Tmin = 0.5To) based on the observed 

conditions during the autopsy. 

Table 7.4 Summary of Results of Multi-Parameter Optimization for Cable 02 

Optimization 
Approach 

T 
(kip) 

EI 
(kip-ft2) 

ℓ 
(ft) 

m 
(lb-sec2/ft2) Total Error 

Initial 55.0 92 49.3 0.330 0.00019 

Single Variable 45.4 - - - 0.00573 

Two Variable 41.0 145 - - 0.00028 

Four Variable 40.0 146 49.4 0.320 0.00024 

 

When multiple parameters were considered in the optimization, the values of the 

residual flexural stiffness, EIf,opt, were more than 50% larger than the value corresponding 

to the undamaged specimen, EIi,opt.  At first glance, this result appears to be incorrect.  

However, it should be noted that the value of EIi,opt for Cable 02 was approximately one-

half the value calculated for Cable 03 (Table 6.7). In addition, the values of EIf,opt were 

approximately 20% less than the initial estimate, which was calculated using the 

geometry of the cross section and assumed material properties (Table 6.3). Based on 

these considerations, the value of EIi,opt seems less reasonable than the value of EIf,opt. 

As expected, the values of ℓf,opt and mf,opt did not vary appreciably from the initial 

values. Calculated natural frequencies using the estimated parameters are summarized in 

Table 7.5 and the corresponding modal errors are plotted in Figure 7.8.  The modal errors 

corresponding to the single-variable optimization were more than two times larger than 

those corresponding to the two-variable optimization.  The modal errors were 

approximately the same for the two-variable and four-variable optimizations, where the 

modal errors were less than 1% for all modes. 



Table 7.5  Comparison of Natural Frequencies for Cable 02 
Optimization Approach 

Mode Measured 
Frequencies Single 

Variable Two Variable Four Variable 

1 3.9 4.0 3.9 3.9 

2 7.9 8.2 8.0 8.0 

3 12.4 12.5 12.4 12.3 

4 17.4 17.1 17.2 17.2 

5 22.6 22.0 22.7 22.7 

6 28.9 27.5 28.9 29.0 
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Figure 7.8  Modal Errors Corresponding to Multi-Variable Optimization for Cable 02 

7.3.3 Cable 03 

The results of the three sets of analyses for Cable 03 are summarized in Table 7.6.  

As before, total error decreased as the number of variables considered in the optimization 

increased. The values of residual tension, Tf,opt, ranged from 32 to 33 kip. These values 

were less than those of Cable 02 but still larger than expected based on the results of the 

autopsy (Tmin < 0.5To). The values of residual flexural stiffness, EIf,opt , ranged from 158 

to 170 kip-ft2, which corresponds to 0.88 to 0.94 EIi,opt. These values are consisted with 
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the expectations summarized in Table 7.1.  When the four-variable optimization was 

conducted, the value of ℓf,opt was the same as ℓi,opt, but mf,opt was 7% less than mi,opt.  

Table 7.6 Summary of Results of Multi-Parameter Optimization for Cable 03 

Optimization 
Approach 

T 
(kip) 

EI 
(kip-ft2) 

ℓ 
(ft) 

m 
(lb-sec2/ft2) Total Error 

Initial 55 188 49.8 0.350 0.00013 

Single Variable 33 - - - 0.00103 

Two Variable 34 170 - - 0.00018 

Four Variable 32 158 49.8 0.326 0.00010 

 

Natural frequencies calculated using the estimated parameters are summarized in 

Table 7.7 and the corresponding modal errors are plotted in Figure 7.9.  The calculated 

frequencies from the analyses with two variables and four variables were nearly identical 

to the measured frequencies, where modal errors for all modes were less than 1%.  Larger 

errors were calculated using the single-variable optimization. 

Table 7.7  Comparison of Natural Frequencies for Cable 03 
Optimization Approach 

Mode Measured 
Frequencies Single 

Variable Two Variable Four Variable 

1 3.5 3.4 3.5 3.5 

2 7.1 7.1 7.1 7.2 

3 11.2 11.2 11.1 11.2 

4 15.8 15.9 15.7 15.8 

5 21.2 21.4 21.1 21.1 

6 27.3 28.0 27.3 27.4 
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Figure 7.9  Modal Errors Corresponding to Multi-Variable Optimization for Cable 03 

7.3.4 Tendon 01 

The results of the three sets of analyses for Tendon 01 are summarized in Table 

7.8.  Although the total error decreased as the number of variables considered in the 

analyses increased, the variation in total error was small. The values of residual tension, 

Tf,opt, ranged from 310 to 330 kip, which are close to the expected value based on the 

observed conditions during the autopsy (Tmin = 0.75To). 

Table 7.8 Summary of Results of Multi-Parameter Optimization for Tendon 01 

Optimization 
Approach 

T 
(kip) 

EI 
(kip-ft2) 

ℓ 
(ft) 

m 
(lb-sec2/ft2) Total Error 

Initial 400 350 32.8 0.442 0.00039 

Single Variable 328 - - - 0.00059 

Two Variable 330 340 - - 0.00055 

Four Variable 310 295 32 0.434 0.00054 

 

When multiple parameters were considered in the optimization, the values of 

residual flexural stiffness, EIf,opt, ranged from 85 to 95% of EIi,opt.  These values are 
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considerably larger than the estimated value of EImin, possibly because the damage was 

concentrated at the north end of the specimen and was not uniformly distributed along the 

entire length.  The values of ℓf,opt and mf,opt did not vary appreciably from the initial values. 

Calculated natural frequencies using the estimated parameters are summarized in 

Table 7.9. The corresponding modal errors are plotted in Figure 7.9.  The modal errors 

corresponding to all three optimization approaches were nearly the same, but the modal 

errors decreased slightly as the number of parameters considered in the analyses 

increased. 

Table 7.9 Comparison of Natural Frequencies for Tendon 01 
Optimization Approach 

Mode Measured 
Frequencies Single 

Variable Two Variable Four Variable 

1 14.2 14.1 14.1 14.1 

2 28.7 28.5 28.6 28.6 

3 43.8 43.8 43.8 43.8 

4 59.7 60.2 60.1 60.1 

5 76.7 78.1 78.0 77.9 

6 98.9 98.0 97.7 97.4 
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Figure 7.10  Modal Errors Corresponding to Multi-Variable Optimization 

for Tendon 01 
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7.3.5 Summary 

The total error decreased as the number of variables included in the analyses 

increased and the values of the residual tension, Tf,opt, were lower than the initial values, 

Ti,opt, for all three sets of analyses.  For Cable 03 and Tendon 01, Tf,opt was not sensitive to 

the number of variables considered in the optimization.  However, for Cable 02, Tf,opt was 

approximately 10% larger using the single-variable optimization compared with the 

multi-variable optimizations.  In all three cases, the values of Tf,opt were larger than 

expected based on the number of wire breaks detected during the autopsy (Table 7.1). 

The values of flexural stiffness, EIf,opt, were more variable than those of the 

residual tension.  For Cable 02, EIf,opt was larger than the initial value, EIi,opt, which is 

inconsistent with expectations.  The value of EIf,opt for Tendon 01 was less than EIi,opt, but 

larger than the expected value based on the number of observed wire breaks.  In contrast, 

the value of EIf,opt for Cable 03 was consistent with the autopsy results (Table 7.1).  The 

results from this series of analyses indicate that the values of EI extracted from the 

measured frequencies need to be interpreted carefully, and that the values of EI do not 

necessarily decrease with increasing damage.  The fact that EI is assumed to be constant 

along the length in the analyses, but the actual damage was localized, which may 

contribute to these inconsistencies. 

The values of ℓf,opt and mf,opt did not vary appreciably from the initial values for 

any of the specimens.  Based on the results of the analyses presented in this section, the 

two-variable optimization appears to be most appropriate for extracting the value of 

remaining tension from the frequency response of damaged external tendons. 

7.4 VARIATION OF STRUCTURAL PARAMETERS WITH INCREASING DAMAGE 

The two-variable optimization procedure was used to extract values of T and EI 

using all frequency measurements for all five test specimens.  The results are summarized 

in this section.  
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7.4.1 Cable Specimens 

The values of T and EI extracted from the measured frequencies of the cable 

specimens are presented in this section. For each optimization, the following ranges of 

parameters were considered: 

(1) T was constrained to vary between 35 and 65 kip using an increment of 1 kip. 

(2) EI was constrained to vary between 50 and 200 kip-ft2 using an increment of 

5 kip-ft2.  

(3) ℓ was assumed to be equal to ℓi,opt (49.1 ft for Cable 01, 49.3 ft for Cable 02, and 

49.8 ft for Cable 03). 

(4) m was assumed to be equal to mi,opt (0.350 lb-sec2/ft2 for Cable 01, 

0.326 lb-sec2/ft2 for Cable 02, and 0.350 lb-sec2/ft2 for Cable 03). 

The values of tension and flexural stiffness extracted from the five sets of natural 

frequencies are summarized in Table 7.10 for Cable 01.  Because the increment used in 

evaluating EI was larger in this set of analyses than the analyses of the undamaged 

specimens discussed in Chapter 6, the value of total error for NF0 is slightly larger in 

Table 7.10 than in Table 6.7. 

Table 7.10 Optimized Parameters for Cable 01 
Parameter NF0 NF1 NF2 NF3 NF4 

T (kip) 63 63 63 62 52 

EI (kip-ft2) 150 135 120 115 135 

Total Error 0.00022 0.00798 0.00015 0.00045 0.00032 

Wire Breaks Reported 0 0 2 3 8 

 

The values of T decreased from 63 to 52 kip during the fatigue test; however, the 

tension did not change appreciably between NF0 and NF3.  The residual tension 

decreased more than 15% between NF3 and NF4.  The values of EI decreased from 150 

to 115 kip-ft2 between NF0 and NF3, and then increased to 135 kip-ft2 in NF4. 



The extracted parameters were normalized with respect to the initial values, To 

and EIo, where To corresponds to the target level of prestress (50% GUTS) and EIo 

corresponds to the idealized section and material properties discussed in Section 6.3.4.  It 

was decided to use these values for normalizing the extracted data, rather than the values 

corresponding to the minimum total error during the first free-vibration test (Ti,opt and 

EIi,opt), because these are the values that the engineer is likely to be using when 

evaluating an existing bridge with external tendons.  The normalized data are plotted in 

Figure 7.11

Early in the fatigue test, the flexural stiffness varied more than the tension.  After 

the eighth wire break was reported (before NF4), the tension decreased abruptly, and the 

flexural stiffness increased.  The increase in flexural stiffness is inconsistent with 

expectations. 
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Figure 7.11  Variation of T and EI during Fatigue Test for Cable 01 

The values of tension and flexural stiffness extracted from the nine sets of 

measured natural frequencies for Cable 02 are summarized in Table 7.11 and Figure 7.12.  

The values of residual tension decreased from 55 to 41 kip during the fatigue test.  In 
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contrast, the values of flexural stiffness tended to increase from 90 to 145 kip-ft2 during 

the fatigue test.  This trend is inconsistent with expectations. 

Table 7.11 Optimized Parameters for Cable 02 
Parameter NF0 NF1 NF2 NF3 NF4 

T (kip) 55 54 52 52 52 

EI (kip-ft2) 90 80 90 90 90 

Total Error 0.00021 0.00041 0.00018 0.00026 0.0o023 

Wire Breaks Reported 0 0 1 2 2 

 
Parameter NF5 NF6 NF7 NF8 

T (kip) 49 46 45 41 

EI (kip-ft2) 110 130 135 145 

Total Error 0.00012 0.00028 0.00033 0.00028 

Wire Breaks Reported 2 5 5 6 
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Figure 7.12  Variation of T and EI during Fatigue Test for Cable 02 
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The values of tension and flexural stiffness extracted from the five sets of 

measured natural frequencies for Cable 03 are summarized in Table 7.12 and Figure 7.13.  



The values of residual tension decreased from 55 to 34 kip during the fatigue test.  The 

tension corresponding to NF1 was slightly larger than the tension corresponding to NF0, 

but this difference may be attributed to numerical errors in the optimization, rather than 

an increase in the tension.  The values of flexural stiffness decreased from 195 to 145 kip-

ft2 between NF0 and NF2; however, the flexural stiffness increased to 170 kip-ft2 in NF3 

and NF4. 

Table 7.12 Optimized Parameters for Cable 03 
Parameter NF0 NF1 NF2 NF3 NF4 

T (kip) 55 56 54 44 34 

EI (kip-ft2) 185 145 130 170 170 

Total Error 0.00014 0.00030 0.00028 0.00011 0.00018 

Wire Breaks Reported 0 0 4 6 8 
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Figure 7.13  Variation of T and EI during Fatigue Test for Cable 03 

 

For the cable specimens, the values of residual tension tended to decrease 

throughout the fatigue test.  This result was expected and reflected the reduction in the 

measured natural frequencies as the extent of damage increased.  However, the values of 
 216
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flexural stiffness were more variable.  Initially, the values of flexural stiffness tended to 

decrease slightly with an increasing number of fatigue cycles.  This trend was expected 

because cracks formed in the grout at the beginning of the fatigue tests, which would 

reduce the flexural stiffness.  However, the values of flexural stiffness increased after 

wire breaks were detected.  This trend was not expected. 

7.4.2 Tendon Specimens 

The values of T and EI extracted from the measured frequencies of the tendon 

specimens are presented in this section. For Tendon 01, the following ranges of 

parameters were considered: 

(1) T was constrained to vary between 300 and 450 kip using an increment of 5 kip. 

(2) EI was constrained to vary between 250 and 400 kip-ft2 using an increment of 

5 kip-ft2.  

(3) ℓ was assumed to be equal to ℓi,opt (32.8 ft). 

(4) m was assumed to be equal to mi,opt (0.442 lb-sec2/ft2). 

The values of tension and flexural stiffness extracted from the fourteen sets of 

measured natural frequencies for Tendon 01 are summarized in Table 7.13 and Figure 

7.14.  The values of residual tension decreased gradually from 390 to 330 kip.  The total 

reduction in tension was less than estimated based on the number of wire breaks observed 

during the autopsy (Tmin = 0.75 To), but the trend is consistent with expectations. 

The values of flexural stiffness decreased gradually from 385 to 330 kip-ft2 during 

the fatigue test.  It is interesting to note that the value of flexural stiffness corresponding 

to the minimum error for most of the free-vibration tests exceeded EIi,opt (Table 6.13). 

This is because the upper limit on EI was larger for the analyses discussed in this chapter 

than the analyses in Chapter 6 (350 kip-ft2 in Chapter 6 and 400 kip-ft2 in Chapter 7).  

However, based on the results presented in Figure 6.11, the total error was not sensitive 

to the flexural stiffness, so the trends should be similar if the same range of parameters 

had been used in the analyses. 



Table 7.13 Optimized Parameters for Tendon 01 
Parameter NF0 NF1 NF2 NF3 NF4 NF5 NF6 

T (kip) 390 380 380 375 370 365 355 

EI (kip-ft2) 385 375 380 370 360 360 360 

Total Error 0.00020 0.00007 0.00017 0.00021 0.00031 0.00031 0.00016* 

Wire Breaks 
Reported 

0 0 2 6 9 11 12 

 
Parameter NF7 NF8 NF9 NF10 NF11 NF12 NF13 

T (kip) 355 355 350 350 345 335 330 

EI (kip-ft2) 360 350 365 365 360 330 340 

Total Error 0.00018* 0.00019* 0.00024 0.00022 0.00028 0.00060 0.00055 

Wire Breaks 
Reported 12 12 14 14 17 20 21 

* Fifth mode not included in optimization. 
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Figure 7.14  Variation of T and EI during Fatigue Test for Tendon 01 

Tendon 02 was moved after construction, and the natural frequencies shifted 

between the initial set of frequency measurements (NF0) and the first set of frequency 

measurements taken when the specimen was in the final position (NF1).  Therefore, the 
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frequencies from NF1 were used to determine the values of ℓi,opt and mi,opt used in the 

analyses.  For Tendon 02, the following ranges of parameters were considered: 

(1) T was constrained to vary between 260 and 425 kip using an increment of 5 kip. 

(2) EI was constrained to vary between 70 and 245 kip-ft2 using an increment of 

5 kip-ft2.  

(3) ℓ was assumed to be equal to ℓi,opt (32.8 ft). 

(4) m was assumed to be equal to mi,opt (0.386 lb-sec2/ft2). 

The values of tension and flexural stiffness extracted from the twenty-one sets of 

measured natural frequencies for Tendon 02 are summarized in Table 7.14 and Figure 

7.15.  The values of residual tension decreased from 405 to 265 kip.  As discussed in 

Chapter 5, three abrupt changes in the natural frequencies were measured during the 

exposure test.  The measured frequencies fluctuated slightly between these abrupt 

changes.  Similar trends were calculated for the residual tension.  The largest change in 

residual tension occurred between NF18 and NF19. 

The variations in flexural stiffness were not consistent with the observed damage.  

Values of EI decreased from 130 to 75 kip-ft2 between NF1 and NF4, and then increased 

to a maximum of 185 kip-ft2 in NF12. 

Table 7.14 Optimized Parameters for Tendon 02 
Parameter NF1 NF2 NF3 NF4 NF5 NF6 NF7 

T (kip) 405 405 410 410 410 365 365 

EI (kip-ft) 130 115 90 75 80 160 165 

Total Error 0.00025 0.00033 0.00060 0.00074 0.00068 0.00047 0.00065 

 



Table 7.14 (cont).  Optimized Parameters for Tendon 02 

Parameter NF8 NF9 NF10 NF11 NF12 NF13 NF14 

T (kip) 360 365 365 365 360 370 360 

EI (kip-ft) 170 170 165 160 185 155 175 

Total Error 0.00067 0.00042 0.00070 0.00001* 0.00052 0.00023 0.00032 

* First mode not included in optimization. 

 
Parameter NF15 NF16 NF17 NF18 NF19 NF20 NF21 

T (kip) 370 345 345 340 270 275 265 

EI (kip-ft) 155 145 145 150 165 135 125 

Total Error 0.00023 0.00012 0.00017 0.00017 0.00017** 0.00011 0.00013 

**  Sixth mode not included in optimization. 
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Figure 7.15 Variation of T and EI during Exposure Test for Tendon 02 

For the tendon specimens, the values of residual tension tended to decrease 

throughout the fatigue/accelerated corrosion tests.  This result was expected and reflected 

the reduction in the measured natural frequencies as the extent of damage increased.  For 

Tendon 01, the residual tension extracted from the measured frequencies at the 

conclusion of the fatigue test was approximately 15% lower than the tension extracted 
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from the frequency response of the undamaged specimen.  For Tendon 02, the residual 

tension at the conclusion of the exposure test was approximately 35% lower than the 

tension corresponding to the undamaged specimen.  The values of flexural stiffness 

extracted from the measured frequency response of Tendon 01 decreased as damage 

increased, and the final value was approximately 12% lower than the initial value.  

However, the values of flexural stiffness extracted from the measured frequency response 

of Tendon 02 were highly variable and did not correlate with increasing damage. 

It is believed that observed trends for the tendon specimens are more 

representative of the performance of external tendons than those from the cable 

specimens because the number of strands, level of prestress, and volume of grout in the 

tendon specimens were more representative of external tendons in post-tensioned bridge 

construction.  

7.5 LIMITATIONS OF VIBRATION TECHNIQUE FOR EVALUATING EXTERNAL POST-
TENSIONED TENDON  

Several issues were identified in the previous section that may limit the use of 

measured frequencies to extract information about the residual level of tension in an 

external tendon and may be attributed to two sources:  model error and numerical 

uncertainty.  Model error refers to the discrepancies between the test specimens and the 

idealized structural system, which is represented using the stiff string model. Of 

particular importance is the assumption that all structural parameters are constant along 

the length of the specimen, which introduces considerable error as damage accumulates at 

discrete locations.  In addition, estimations of the parameters ℓ and m, may introduce 

errors in the residual tension calculations if frequency measurements are not available for 

the undamaged tendon, as the errors for the undamaged specimens (Chapter 6) were 

sensitive to the length used in the analyses. 

The numerical uncertainty refers to the inaccuracies related to the error function – 

the least squares function in this case.  The least squares function is commonly used 

where the probability of error is normally distributed.  However, the analyses discussed in 
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this chapter indicate that the least squares function can produce non-unique solutions. In 

general, the error function, also called objective function, restrains the numerical 

procedures to yield the optimum value of the unknown parameters. However, restraints 

were not suggested in this dissertation because information, such as the behavior of 

external tendons after damage and the appropriate values of structural parameters for 

recently constructed bridges, is rarely available.   

The interpretation of damage in this dissertation has focused on the relationship 

between the remaining cross-sectional area of strands and the residual prestressing force.  

As discussed in Section 7.3, the calculated changes in tension at the conclusion of the 

fatigue tests were typically less than those calculated based on the number of wire breaks 

observed during the autopsy.  Two factors may contribute to these differences: 

(1) As discussed in Chapter 3, the tensile stresses in the wires of a strand redistribute 

after a wire has fractured.  In addition, the fractured wire is able to recover tensile 

stress due to the spiral configuration of the wires in the strand.  Therefore, the 

remaining cross-sectional area of strands is not a direct indicator of the level of 

tension.  For example, the two cross sections in Figure 7.16 have the same number 

of strands and the same number of wire breaks.  However, the tension in 

Section A is expected to be larger than the tension in Section B due to the 

distribution of wire breaks. 

(2) All seven wires fractured in at least one strand for all five test specimens.  Based 

on the calculations summarized in Table 7.2, the residual stress in these strands 

should be zero.  However, the calculated values of residual tension, Tf,opt, 

exceeded the estimated values, Tmin, for Cable 02, Cable 03, and Tendon 01.  

Although the actual number of broken wires in Tendon 02 is not known, it is 

reasonable to assume that all seven wires in the top three strands (the strands 

exposed to acid) fractured during the accelerated corrosion test.  In that case, only 

two-thirds of the initial area of strand would be available to resist tension at the 

conclusion of the test.  The ratio Tf,opt/Ti,opt was 0.65 for Tendon 02, which is close 

to the expected value based on the cross-sectional area.  The primary difference 



between Tendon 02 and the other test specimens is that the reaction frame for 

Tendon 02 was not tied to the strong floor in the Ferguson Structural Engineering 

Laboratory.  It is possible that the additional axial stiffness caused by bolting the 

reaction frames to the strong floor provided a mechanism for stresses to 

redistribute among strands. 

 

  

(a) Section A: scattered damage (b) Section B: concentrated damage 

Figure 7.16  Cross Section of External Tendon with Wire Breaks 

As discussed previously, external tendons in the post-tensioned bridge are 

designed to maintain applied prestressing force over the service life of the bridge.  The 

preservation of this compressive force in the concrete section is the key guaranteeing the 

safety of the bridge.  Because the prestressing force dominates the behavior of external 

tendon, determining the residual prestressing force is fundamental to assessing the 

condition of an external tendon. 

External tendons typically contain 12 to 19 strands, and corrosion damage is 

expected to be distributed among tendons, but concentrated in a few strands within each 

tendon. Low levels of damage, such as few wire breaks, are not expected to influence the 

capacity of the entire structural system because the residual tension in the external 

tendons is not reduced.  However, as damage in individual strands accumulates, 

considerable loss of tension may occur – two to three wire breaks in a given strand are 

likely to cause fracture of all wires in the strand (Table 7.2).  In this case, the structural 

capacity of the system is reduced. If the damage to external tendons progresses such that 
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a number of tendons are compromised, the capacity of structure system could be severely 

limited. 

Based on these assumptions, the structural capacity of an externally post-

tensioned bridge is idealized as a function of the number of wire breaks in Figure 7.17. 

The level of damage has been separated into three phases: strand damage (individual wire 

breaks), tendon damage (loss of all seven wires in a strand), and system damage (loss of 

multiple strands in multiple tendons). The capacity of an individual strand is not assumed 

to decrease due to the presence of a single wire break, but the capacity of a tendon is 

assumed to decrease after the loss of a single strand.  The capacity of structural system is 

assumed to decrease with increasing tendon damage.  
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Figure 7.17  Idealization of Variation in Structural Capacity with Increasing Damage 

The vibration technique detects the presence of damage in a post-tensioned bridge 

by identifying shifts in the natural frequencies. Therefore, this technique is best suited for 

identifying damage in the second phase, as highlighted in Figure 7.17.  The loss of three 

to four strands per tendon should be detectable using this approach.  Although it is 

desirable to detect damage of individual strands, the influence on structural response is 

trivial, and therefore, can not be detected using measured natural frequencies.   
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7.6 SUMMARY   

The objective of this dissertation is to correlate the recorded natural frequencies 

with levels of damage for external tendons.  The vibration technique described in this 

chapter demonstrates that the two-variable optimization approach can be used to detect 

significant losses in the level of prestress from shifts in the natural frequencies.  However, 

the optimization procedure should be viewed as a qualitative approach for identifying the 

most severely damaged tendons, rather than a means of determining losses in prestress 

quantitatively.  

The measured natural frequencies decreased as damage accumulated in the test 

specimens.  However, the changes in the natural frequencies were not proportional to the 

number of wire breaks.  The residual values of tension also decreased with increasing 

damage, but in most cases the calculated values of tension exceeded expectations for a 

given level of damage.  Using the two-variable optimization procedure, variations in 

flexural stiffness were also calculated.  However, the calculated values were highly 

variable and often increased as the level of damage increased. 
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Chapter 8: Summary and Conclusions 

8.1 SUMMARY 

The objective of the research program reported in this dissertation is to investigate 

the use of vibration signatures to detect the presence of damage in external, post-

tensioned tendons. Although the types of damage induced in the test specimens during 

this investigation may not be representative of the most likely causes of damage in post-

tensioned tendons during the service life of a bridge, the static and dynamic response of 

the specimens was measured periodically as damage accumulated. Therefore, the 

recorded data provide a means of evaluating the sensitivity of this nondestructive method 

of evaluation.  

The experimental program may be separated into three phases, and different 

specimens were tested in each phase.  

 A series of uniaxial tests of individual strands were conducted in the first phase.  

Structural properties, such as the tensile strength and elastic modulus, were 

determined. The variation of these parameters with increasing levels of damage 

was investigated. Damage was simulated in three ways: uniform corrosion on the 

surface of the strand, strands with cut wire(s), and strands with initial defects in 

one wire. Redistribution of stress and recovery of stress in broken wires were also 

investigated.  

 Three, 49-ft long cable specimens were constructed and subjected to fatigue 

loading. These specimens comprised two strands stressed to 50% GUTS. As the 

fatigue tests progressed, damage in the form of wire breaks and cracks in the grout 

developed. The specimens were continuously monitored using acoustic sensors to 

detect energy released by wire breaks. Variations in the transverse stiffness and 

natural frequencies of the specimens were also measured periodically. After 

completion of the fatigue tests, the specimens were dissembled and the extent of 

the damage was determined visually. 
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 Two external tendon specimens were constructed. Damage was induced in 

Tendon 01 by fatigue loads and the strands in Tendon 02 were exposed to acid to 

induce corrosion.  Tendon 01 comprised 12 strands stressed to 60% GUTS and 

Tendon 02 comprised 9 strands stressed to 80% GUTS. The specimens were 

constructed with commercial post-tensioning hardware and concrete anchor 

blocks were positioned at both ends. The transverse stiffness and natural 

frequencies were recorded periodically during the fatigue tests for Tendon 01. 

Natural frequencies were recorded periodically during the exposure test for 

Tendon 02.  After completion of fatigue tests, the specimens were dissembled and 

the extent of the damage was determined visually. 

 

The frequency response of the test specimens was evaluated to estimate the extent 

of the induced damage. An optimization scheme was developed to extract the residual 

tension in the test specimens from the measured natural frequencies.  

 A numerical scheme was developed to evaluate the extent of damage in the test 

specimens. The stiff string model was considered to provide better approximation 

of the structural response than the taut string model. The feasibility of the 

numerical scheme was first evaluated using the frequency response of the 

undamaged specimens. The values of tension, flexural stiffness, mass per unit 

length, and specimen length corresponding to the minimum total error were 

calculated. The sensitivity of the total error to each of the four structural 

parameters was also evaluated.   

 Measured natural frequencies for all five specimens recorded throughout the 

testing period were presented and compared with the induced damage. The 

numerical scheme was used to determine the values of the structural parameters in 

the damaged specimens that best matched the measured frequencies. A two-

variable optimization procedure was considered to be the most appropriate for 

calculating the residual tension in the damaged specimens.  
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8.2 CONCLUSIONS 

The conclusions from each phase of the investigation are summarized in this 

section. 

8.2.1 Individual Strands 

During design, prestressing strand is typically assumed to have a circular cross 

section with the same area as the area of the seven wires.  However, the helical geometry 

has a significant influence on the behavior of strand as damage accumulates.  

 The elastic modulus of the strand was determined to be 29,400 ksi and the 

apparent modulus of elasticity of the individual wires was determined to be 

30,800 ksi. This indicates that higher stresses develop in the outer wires of the 

strand than in the idealized cross section at the same level of longitudinal 

elongation. 

 The residual tensile strength of damaged strands was approximately proportional 

to the cross-sectional area of the intact wires. After the first wire break, the strand 

still behaved in an elastic manner. 

 Minor uniform corrosion on the surface of the strand did not influence the 

structural properties appreciably. Changes in strength and stiffness were not 

significant in spite of the presence of corrosion products. 

 When a wire fractures during a tension test, the sudden release of energy is 

sufficient to unravel the broken wire over a considerable length, if the wires are 

not restrained.  In the larger-scale specimens, the grout restrained the wires.  

During Phase 3 of the individual strand tests, metal hose clamps were used to 

prevent unraveling of the wires. 

 After fracture of a wire, stress in the strand redistributes to adjacent wires.  In 

addition, if friction is present between the broken wire and the adjacent wires in 

the strand, the broken wire will be able to recover some of its initial stress a 

distance from the wire break.  
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The observations made during the uniaxial tests are sensitive to the length of the 

test specimens and the friction that develops in a strand within a grouted duct was not 

evaluated.  However, the test results indicate that a strand with a few wire breaks can still 

resist the initial prestressing.  

8.2.2 Cable Specimens 

When evaluating external tendons, it is often assumed that a loss of cross-

sectional loss would lead to a proportional loss of prestressing. However, the test results 

from the cable specimens indicated that presence of wire breaks does not necessarily 

influence the static or dynamic response  

 Transverse stiffness and natural frequencies decreased gradually as damage 

accumulated in the test specimens. However, neither parameter was sensitive to 

the first few wire breaks.  

 The reduction in transverse stiffness and natural frequencies was not linearly 

related to the number of wire breaks. For example, all the wires fractured in one 

strand in Cable 02, while the other strand remained intact.  Therefore, 50% of the 

cross-sectional area of the strand was lost during the fatigue tests.  However, the 

transverse stiffness decreased by approximately 20% and the natural frequencies 

decreased by approximately 10% during the fatigue tests. 

These trends suggest that the conventional idealization of damage accumulation is not 

sufficient to evaluate the response of a damaged external tendon.  

8.2.3 Tendon Specimens 

The behavior of the tendon specimens was more complicated than the cable 

specimens due to two factors:  restraint at the end of the specimens was distributed along 

the length of the concrete anchor blocks and the relative positions of the strand varied 

along the length of the specimens.  These conditions are considered to be representative 

of conditions in external tendons in post-tensioned bridges because the strands are not 
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parallel along the length of the tendons, but are compressed near the anchor heads and as 

the tendon passes through deviators.  

 The transverse stiffness and natural frequencies decreased gradually in Tendon 01 

as the extent of damage increased. Twenty-five wire breaks, which corresponds to 

nearly 30% of the wires, were observed during the autopsy, but the natural 

frequencies changed by less than 10% and the transverse stiffness varied by less 

than 15%. 

 The natural frequencies in Tendon 02 decreased in discrete jumps as wire 

fractures were observed in the different voids.  The total decrease was larger than 

observed in the other test specimens. Thirty wire breaks were observed at the 

conclusion of the test and the natural frequencies changed by less than 20%.  It 

was likely that wires fractured in the same strand at multiple locations along the 

length of the specimen. The high prestressing ratio of 80% GUTS also appeared 

to have influenced the response of this specimen. 

 Recorded vibrations from the tendon specimens indicated that the concrete anchor 

blocks influenced the frequency response of the specimens.  Because the strands 

were restrained along the length of the anchor blocks, rather than fixed at the 

anchor head, multiple peaks were observed in the frequency response of the 

specimens. 

 Tendon 02 was stored outside during the 5-month exposure test.  Temperature 

variations did cause fluctuations in the recorded natural frequencies; however, 

these variations were minor and easily distinguished from changes in frequency 

caused by the wire fractures. 

The observed trends for the tendon specimens were similar to the cable specimens, but 

the frequency response was more complex due to the distributed restraint within the 

concrete anchor blocks. 
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8.2.4 Evaluation of Natural Frequency Response 

The natural frequencies were recorded periodically during the fatigue and 

accelerated corrosion tests for all five test specimens.  The residual tension was extracted 

from these data as damage accumulated.  Observations from this phase of the research 

demonstrate the feasibility of using vibration signatures for nondestructive evaluation of 

external tendons. 

 Two analytical models were proposed to relate the measured frequencies to the 

structural properties for the test specimens.  The stiff string model provided a 

better match to the measured response than the taut string model, indicating that 

flexural stiffness influences the frequency response of the test specimens. 

 Values of the four structural parameters used in the stiff string model were 

extracted from the measured frequency response of the undamaged specimens.  

The cable specimens were most sensitive to the tension and flexural stiffness, 

while the tendon specimens were most sensitive to the tension and the length of 

the specimen. 

 Dual peaks were observed in the frequency response of the tendon specimens.  It 

is believed that this phenomenon is caused by the non-rigid boundary conditions 

within the concrete anchor blocks.  The frequency response of the tendon 

specimens was bounded using the clear length and the overall length of the 

specimens.  Similar trends are expected in the post-tensioned bridges; therefore, 

care must be taken in evaluating the frequency response of external tendons. 

 The natural frequencies of the specimens decreased as damage accumulated. 

However, reductions in frequencies were not proportional to the number of wire 

breaks. The following trends were similar in all five test specimens: (1) the 

changes in the frequencies were modest for the first few wire breaks, and 

(2) lower modes were more sensitive to damage than higher modes. 

 Three specimens with well-defined damage at the end of the fatigue tests were 

used to evaluate the optimization procedure used to extract the structural 
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parameters from the measured frequency response of the damaged specimens. The 

results of the analyses indicated that (1) the values of residual tension were higher 

than expected based on the observed levels of damage, (2) the values of flexural 

stiffness varied with increasing damage and (3) the values of length of the 

specimens and mass per unit length were not sensitive to the optimization 

algorithm.  

 The values of residual tension and flexural stiffness were extracted from the entire 

set of measured natural frequencies using the two-variable optimization procedure. 

The values of residual tension generally reflected the level of induced damage, but 

the values of flexural stiffness were variable.  

 The vibration signatures technique was success in detecting significant losses in 

tension in external tendons using the two-variable optimization approach. 

Limitations of this technique are primarily related to insufficient information 

about the structural behavior of the external tendons after damage. Therefore, a 

comprehensive understanding of the behavior of external, post-tensioned bridges 

must be developed to utilize the full potential of this technique..  

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH  

The test results and observations made during this research program suggest that 

the ability to detect damage within an external tendon using the vibration signatures 

depends on the level of the initial prestress and the number of wires that fracture within 

individual strands. For example, the damage associated with seven wire breaks at one 

location in a single strand is much easier to detect than seven wire breaks in seven strands 

at one location or a total of seven wire breaks in a single strand that are distributed along 

the length of the tendon. However, within the limitations of this technique, it appears that 

further research is needed to enhance our understanding of the behavior of the external 

tendons with damage. This advanced understanding is critical for the applicability of the 

vibration method for the external tendon. As a result, it is recommended that the future 

research studies may be performed in four ways: 
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 Further studies of the behavior of strand after wire fracture(s) are required. The 

related topics may include the structural effects caused by the stress redistribution 

and stress recovery in the broken wires, the stress that can be recovered in a 

grouted tendon, and the energy released when a wire fractures. A better 

understanding of these phenomena is critical to quantifying the extent of damage 

in an external tendon. 

  The sensitivity of frequencies to the actual boundary conditions should also be 

studied.  All test specimens represented a single, straight section of an external 

tendon, but the presence of deviators may also influence the dynamic response. 

 The analytical models used in this investigation were based on the assumption 

that the structural properties were uniformly distributed along the length of the 

tendon.  More comprehensive models may be required to determine discrete 

changes in the structural properties along the length of the tendon. 

 The application of the vibration technique to existing post-tensioned bridges is 

highly recommended. It should be noted that current procedures used to interpret 

the measured response include a number of uncertainties, and it may be necessary 

to measure the natural frequencies immediately after the bridge is completed to 

estimate the initial value of the parameters.  



Appendix A: Assembly of Anchor Barrel Assembly and Steel Plate 

 

The specimen was gripped using an anchor barrel assembly at the top and 

intermediate cross head. The anchor barrel assembly consisted of a metal cylinder with a 

tapered hole and two wedges (Figure A.1). The strand specimens were positioned through 

the hole first and then gripped by two wedges. 

 
Figure A.1 Drawing of Anchor Barrel 
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In each cross head, the steel plate was positioned to accommodate the anchor 

barrel. A shim and jaw of the uniaxial machine was removed and replaced with the steel 

plate (Figure A.2). The steel plate was fabricated using two plates and attached by 

welding (Figure A.3). The plate had a 5/8-in diameter hole in center and a total thickness 

was 2.5 in. This steel plate was fixed to the cross beam by two bolts.  

(a) Top cross head (b) Intermediate cross head 

Figure A.2 Assembly of Anchor Barrel and Steel Plate 
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Figure A.3 Drawing of Steel Plate 
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Appendix B: Strain Measurements from DEF Specimens 

 

Recorded strains from DEF specimens are displayed in Figure B.1 through Figure 

B.4. 
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(a) Stress distribution at midspan 
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(b) Stress distribution 3 ft from midspan 

Figure B.1 Redistribution of Strain for Specimen DEF 1 
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(b) Stress distribution 4 ft from initial defect 

Figure B.2 Redistribution of Strain for Specimen DEF 2 
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(b) Stress distribution 3 ft from midspan 

Figure B.3 Redistribution of Strain for Specimen DEF 3 
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(b) Stress distribution 4 ft from initial defect 

Figure B.4 Redistribution of Strain for Specimen DEF 4 
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Appendix C: Construction of Cable Specimen 

 

The process used to construct the cable specimen is summarized in this section. 

Additional information is presented by Bean (2006) 

C.1 ANCHORAGE SYSTEM 

The anchor heads and the grout caps were manufactured to grip two, 0.6-in. 

strands and contain grout as shown in Figure C.1. The anchor head had 7-in. diameter and 

5-in. thickness. The anchor head was originally designed with four holes. Later the two 

extra holes were sealed with an epoxy or silicone. The grout cap was fabricated from a 

steel plate and pipe. Grout vents were located near the end of each cap. The grout cap was 

connected to the anchor head by four bolts on the flange. 

 

Figure C.1 Anchor Head and Grout Cap 

C.2 REACTION FRAME 

The anchor heads were supported by two buttresses, which were constructed from 

W 12×40 sections. The buttresses were bolted to the laboratory floor and were positioned 

about 50 ft apart. Two beams spanned between the buttresses and a 2-in. plate spanned 

between the beams (Figure C.2). 
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Figure C.2 Reaction Frame and Anchorage Assembly 

C.3 ASSEMBLY OF STAY CABLE SPECIMEN 

Each specimen was constructed from two anchor heads, two 0.6-in. strands, and 

post-tensioning ducts. After the specimens were assembled and stressed, the duct was 

filled with grout. The duct had an inside diameter of 3.35 in. and was a blend of 

polyethylene and polypropylene. Because the semi-transparent duct had ribs and flow 

channels along the length the flow of grout was visually identified during the grouting 

procedure (Figure C.3a).  

Three 20-ft long section of the post-tensioning ducts were used to construct each 

specimen. First, the strands were pushed through the sections of ducts. Then the strands 

were pushed through the holes in the anchor head and pulled taut the strands along the 

length. The strands were held with wedges. Finally, wood supports were positioned under 

the specimen to prevent excessive slack as shown in Figure C.3(b). The sections of duct 

were connected after the strands were stressed and stain gages attached to the strands. 
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(a) Post-tensioning duct (b) Initial assembly of the specimen 

Figure C.3 Assembly of Cable Specimen 

 

C.4 STRESSING PROCEDURE   

After the components of the cable specimens were assembled, the prestressing 

was applied to the strands. The strands were individually pulled using a hydraulic ram to 

a force of 30 kip, a total of 60 kip for the specimen.  

A hydraulic pump was connected to the ram with a hydraulic hose and a pressure 

gage indicated the pressure level. The stressing was completed by the repeated cycles of 

pulling and releasing the strand for three times to minimize seating losses (Figure C.4). 

During each cycle, the maximum applied force was increased about 10, 20, and 30 kip. 

Two springs were positioned between the anchor head and the nose of hydraulic 

cylinder to minimize the movement of the wedges when the applied force was released. 

The strand was overstressed about 5% to compensate for expected losses.  
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Figure C.4  Stressing Strand with Hydraulic Ram  

C.5 STRAIN GAGE INSTRUMENTATION AND PIPE CONNECTION 

After the stressing procedure was completed, strain gages were attached to the 

strand (Figure C.5). The strain gages were manufactured by the Tokyo Sokki Kenkyujo 

Company (model FLA-3-11-5LT). The gages were attached at desired locations using a 

cyanoacrylate adhesive and wrapped by an insulated tape. The strain gages were 

positioned along the longitudinal axes of outer wires. The number and location of gages 

varied for each specimen.  

 

 
Figure C.5 Strain Gage Installation 
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After all internal instrumentation were installed, adjacent sections of plastic ducts 

were connected using plastic couplers and then covered with the plastic heat shrink 

(Figure C.6a). Voided space between the plastic pipe and the steel plate in the buttress 

was sealed with an expanding foam.  

After the sections of duct were connected, numerous wooden supports were 

placed under the specimen to set the elevation of the duct (Figure C.6b).  

 

(a) Coupler and plastic heat shrink  (b) Alignment and wooded supports 

Figure C.6  Completion of Pipe Connection 

C.6 GROUTING PROCEDURE 

The cable specimens were grouted with a prepackaged grout, SikaGrout 300PT. 

Four grout vents were placed along the length of specimen. Two vents were located at the 

grout caps. Other two vents were located 5 to 8 ft from the end. The grout inlet was 

positioned at midspan (Figure C.7a). 
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(a) Grout inlet (b) Grout mixing and pumping 

Figure C.7 Grouting Procedure 

Grout was mixed 3 to 5 min with prescribed amount of water in a shear type 

mixer (Figure C.7b). The grout was then pumped into the specimen. After grout flowed 

through each of the vents, the vents were closed.  
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Appendix D: Hydraulic Actuator System and Controller 

 

The transverse loading of cable and tendon specimens were operated using the 

MTS controlling unit with a different configuration of the hydraulic actuator system. 

D.1 HYDRAULIC ACTUATOR CONFIGURATION FOR CABLE SPECIMEN  

A 5-kip hydraulic actuator with an external LVDT was used to apply transverse 

loads to the cable specimen as shown in Figure D.1. Hydraulic pressure was supplied by 

an MTS hydraulic supply (model 506.02) and regulated by an MTS 293 hydraulic 

manifold. An external load cell manufactured by Interface (model 1010AF-5K-B) was 

installed at the end of the actuator to measure the applied force. The displacement 

transducer to monitor the hydraulic actuator was manufactured by G.L. Collins 

Corporation (model A5453).  

 

 

LVDT 

Load Cell 

Actuator 

Controller 

Connector 
PC based 
software 

Figure D.1 Hydraulic Actuator and Control Unit for Cable Specimen 



D.2 HYDRAULIC SYSTEM FOR TENDON SPECIMEN 

An MTS hydraulic actuator (Model 244.22-07) with the capacity of 22 kip was 

used to apply transverse loads to tendon specimen as shown in Figure D.2. The pressure 

was supplied by an MTS hydraulic power unit (Model 505.30) and regulated by an MTS 

293 hydraulic manifold. The displacement and loading information were monitored by 

internal sensors of the actuator and transmitted to the control unit. 

 

 

Controller 

Hydraulic Manifold 

MTS hydraulic actuator  

Figure D.2 Hydraulic Actuator and Control Unit for Tendon 01 

D.3 OPERATION OF HYDRAULIC LOADING SYSTEM 

The fatigue and static test were controlled by the MTS Flex TestTM SE system and 

operated by a PC based software (MTS Flex TestTM manager v 3.50). The interface of 

this software is displayed in Figure D.3(a). The input loading was assigned at the “Station 

Manager” window and the feedback was given in the “Meters” window located left 

bottom. The fatigue tests were run under displacement control and the input loading was 

operated by three parameters: target setpoint, amplitude, and frequency (Figure D.3b). 
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The target setpoint corresponds to the initial position for the cyclic loading. The cyclic 

movement of the actuator was initiated by defining the amplitude and frequency.  

 

 

(a) Interface of software 
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(b) Cyclic loading parameters 

Figure D.3 Load Input Operation 
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Appendix E: Portable Data Acquisition System Development  

 

A data acquisition (DAQ) system was composed for the vibration method in the 

Ferguson Structural Engineering Laboratory. The vibration test aims to assess the 

integrity of target structures in field; thus, the DAQ system needs to be portable. The 

DAQ system is also desired to be durable and low-cost.  

E.1 DATA ACQUISITION SYSTEM 

The portable DAQ system consisted of a signal conditioning box manufactured by 

National InstrumentsTM and a laptop computer with a LabView 7.1 software. The signal 

conditioning box was composed of a chassis, an input module, and a terminal block 

(Figure E.1). The chassis (NI SCXI-1000) offered the sampling rate of 333 kS/sec. Inside 

of  this box, the input module (NI SCXI-1520) was plugged to conduct signal 

conditionings such as filtering and signal amplification. At the end of this module, the 

terminal block (NI SCXI-1314) was connected to link an accelerometer to the signal 

conditioning box. The signal conditioning box was enclosed by a 2×2×1 ft metal box for 

protection against external impact. This system was connected a laptop using a USB cord 

and operated by a PC based software.  

 
Figure E.1 DAQ System 



E.2 ACCELEROMETER 

The low G micro machined accelerometer (model MMA 1220D) from the 

Freescale SemiconductorTM was used for dynamic measurements. This sensor had various 

advantageous features for the vibration test. This sensor could measure a amplitude of 

acceleration to ±8g and hold without permanent damage against 1.2-m drop. This sensor 

offered the typical bandwidth of 250 Hz and valued about $ 30.  

The product was purchased in parts and assembled in the laboratory. After 

assembly and the sensor was covered with a transparent epoxy. This type of 

accelerometers was attached to all cable specimens and Tendon 01 using a hot-melting 

glue (Figure E.2a). Later, the dimension of the accelerometers was minimized by 

removing unused circuit plate. The sensors were also enclosed in a plastic cubic box and 

covered with a chemical compound (Figure E.2b). This type of sensors was applied for 

the outdoor test; Tendon 02.  

 

(a) Original accelerometer (Tendon 01) (b) Modified accelerometer (Tendon 02) 

Figure E.2 Modification of Accelerometer 

The modified accelerometers were connected to the terminal block via a plastic 

connector (Figure E.3a). Therefore, the sensors were attached to the plastic duct during 

the test period but connected to the DAQ system only when the test was conducted.   
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The portable frame with the accelerometer was fabricated using a light aluminum 

metal tubes and rods to offer a quick installation method in field. The vibration signal 

recorded by the sensor on the frame indicated the identical results with adjacent sensors.  

 

(a) Terminal block and wire connector (b) Portable frame 

Figure E.3 Portable Sensor and Connector 
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E.3 PC BASED SOFTWARE 

The vibration signals were recorded by the program based on Lab-View 7.1. This 

program was designed to provide a user-friendly operational tool.  

The interface of the software embedded required input parameters, operational 

menus, and test results in one front window. Upper graph displayed recorded signals in 

time domain and lower graph displayed converted signals into frequency domain (Figure 

E.4). Commends and required parameters are briefly described in Table E.1.  

 

 
Figure E.4 Interface of PC based Software 
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Table E.1 Description of Menu and Parameters 
 Item Description 

Monitor Automatically update of acquired signal 

Measure Initiate measurement 

Menu 

Save Save acquired signal 

DAQ physical channel Define channel of DAQ system 

Rate Define sampling rate (sample/sec) 

Sampling per channel Define sampling number 

Setting 

Second to wait Delay initiation of measurement (second) 

Offset Offset acquired signal Etc 

Analog filter Operate built-in analog filter in DAQ system 
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Appendix F: Distribution of Strains for Cable Specimen 

 

F.1 CABLE 01 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-600 -400 -200 0 200 400 600
με

Lo
ad

 (k
ip

)

A1 A2 A3

A4 B4 C1

C2 C3 C4

 
Figure F.1 Strain Distribution of SM 0 
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Figure F.2 Strain Distribution of SM 1 



F.2 CABLE 02 
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Figure F.3 Strain Distribution of SM 0 
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Figure F.4 Strain Distribution of SM 1 
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Figure F.5 Strain Distribution of SM 2 
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Figure F.6 Strain Distribution of SM 3 
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Figure F.7 Strain Distribution of SM 4 
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Figure F.8 Strain Distribution of SM 5 
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Figure F.9 Strain Distribution of SM 6 
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F.3 CABLE 03 
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Figure F.10 Strain Distribution of SM 0-0 

0.0

0.1

0.2

0.3

0.4

0.5

-400 -300 -200 -100 0 100 200 300

με

Lo
ad

 (k
ip

)

A1 A2
A3 A4
B1 B2
B3 B4
C1 C2
C3 C4
D1 D2
D4 E1
E2 E3
E4 G1
G4 F1
F4 I1
I2 I3
I4 H1
H2 H3
H4

 
Figure F.11 Strain Distribution of SM 0-1 
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Figure F.12 Strain Distribution of SM 0-2 
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Figure F.13 Strain Distribution of SM 0-3 
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Figure F.14 Strain Distribution of SM 0-4 
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Figure F.15 Strain Distribution of SM 0-5 
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Figure F.16 Strain Distribution of SM 0-6 
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Figure F.17 Strain Distribution of SM 1 
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Figure F.18 Strain Distribution of SM 2 
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Figure F.19 Strain Distribution of SM 3 
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Appendix G: Natural Frequencies of Cable Specimens 

G.1 CABLE 01 
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Figure G.1 Normalized Root Mean Square (RMS) of NF 0 
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Figure G.2 Normalized Root Mean Square (RMS) of NF 1 
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Figure G.3 Normalized Root Mean Square (RMS) of NF 2 
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Figure G.4 Normalized Root Mean Square (RMS) of NF 3 
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Figure G.5 Normalized Root Mean Square (RMS) of NF 4 
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G.2 CABLE 02 
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Figure G.6 Normalized Root Mean Square (RMS) of NF 0 
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Figure G.7 Normalized Root Mean Square (RMS) of NF 1 
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Figure G.8 Normalized Root Mean Square (RMS) of NF 2 
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Figure G.9 Normalized Root Mean Square (RMS) of NF 3 
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Figure G.10 Normalized Root Mean Square (RMS) of NF 4 
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Figure G.11 Normalized Root Mean Square (RMS) of NF 5 
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Figure G.12 Normalized Root Mean Square (RMS) of NF 6 
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Figure G.13 Normalized Root Mean Square (RMS) of NF 7 
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Figure G.14 Normalized Root Mean Square (RMS) of NF 8 
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G.3 CABLE 03 

0 5 10 15 20 25 30 35
0

0.5

1

Acc 1
Acc 2

0 5 10 15 20 25 30 35
0

0.5

1

N
or

m
al

iz
ed

 R
M

S Acc 1
Acc 2

0 5 10 15 20 25 30 35
0

0.5

1

Frequency (Hz)

Position 1

Position 2

Position 3
Acc 1
Acc 2

 
Figure G.15 Normalized Root Mean Square (RMS) of NF 0 
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Figure G.16 Normalized Root Mean Square (RMS) of NF 1 
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Figure G.17 Normalized Root Mean Square (RMS) of NF 2 
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Figure G.18 Normalized Root Mean Square (RMS) of NF 3 
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Figure G.19 Normalized Root Mean Square (RMS) of NF 4 
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Appendix H: Summarized Test Schedule for Cable Specimens 

H.1 CABLE 01 

Table H.1 Summarized Test Schedule for Cable 01 
Configuration Date Cycle 

Force (kip) Displacement (in)
SoundPrintTM 

Report 
Remark 

 Initial measurement 

9/01/05 0 0.8±0.5at0.6Hz   Test started 

9/06/05 Measurement 1 

9/12/05 559,166 0.8±0.5at 1.25 Hz    

9/15/05 879,999 0.8±0.5 at 1.5Hz    

9/16/05 Measurement 2 

9/27/05 Measurement 3 

    10/03/05 1:42 am Wire break(1) 

10/03/05 Measurement 4 

    10/04/05 6:10 pm Wire break(2) 

10/05/05 Measurement 5 

10/14/05 
LVDT Replacement (from force-control to displacement-control)/ 

Relocation of the Actuator 
10/17/05 3,401,982  1.5±1.25at 1.5 Hz  Restart 

10/17/05  

    10/24/05 6:50 pm Wire break(3) 

10/24/05 Measurement 6 

    10/25/051:22 am Wire break(4) 

    10/25/056:43 pm Wire break(5&6)

    10/26/056:30 pm Wire break(7) 

    10/26/059:56 pm Wire break(8) 

10/27/05 Measurement 7 

    10/27/05 2:46 pm Wire break(9) 

    10/27/05 4/36 pm Wire break(10) 

    10/27/05 8:28 pm Wire break(11) 

    10/28/05 1:09 am Wire break(12) 

    10/28/05 3:35 pm Wire break(13) 

    11/1/05  3:15 am Wire break(14) 

11/01/05 5,044,194 Test terminated due to failure of specimen 
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H.2 CABLE 02 

Table H.2 Summarized Test Schedule for Cable 02 
Date Cycle Configuration (in) SoundPrintTM Report Remark 

  Initial measurement 0 

2/21/06 0 1.52±1.25 at 1.5Hz  Test started 

2/24/06  Measurement 1 

2/24/06 338,828 1.58±1.25 at 1.5 Hz  Reconfiguration 

2/28/06 N/A Measurement 2 

   3/02/06 12:53 pm Wire break (1) 

3/03/06  Measurement 3 

3/03/06 1,239,369 1.55 ± 1.25 at 1.5 Hz  Reconfiguration 

   3/03/06 5:32 pm Wire break (2) 

3/06/06  Measurement 4 

3/06/06 1,627,765 1.42± 1.25 at 1.5 Hz  Reconfiguration 

3/15/06  Measurement 5 

3/15/06 2,909,696 1.40± 1.25 at 1.5 Hz  Reconfiguration 

3/21/06  Measurement 6 

3/21/06 3,567,128 1.54± 1.25 at 1.5 Hz  Reconfiguration 

   3/22/06 10:28 am Wire break (3) 

   3/23/06 8:22 am Wire break (4) 

   3/23/06 6:27 pm Wire break (5) 

3/24/06  Measurement 7 

3/24/06 3,924,975 1.81± 1.25 at 1.5 Hz  Reconfiguration 

3/27/06 N/A Measurement 8 

3/27/06 4,323,719 1.96± 1.25 at 1.5 Hz  Reconfiguration 

   3/28/06 5:32  pm Wire break (6) 

3/30/06 4,603,980 Final Measurement 9 

3/30/06  1.96± 1.25 at 1.5 Hz  Reconfiguration 

4/01/06 4,899,220 Test terminated 
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H.3 CABLE 03 

Table H.3 Summarized Test Schedule for Cable03 
Date Cycle Configuration (in) SoundPrintTM Report Remarks 

  Initial measurement 0 

4/25/06 0 1.5±1.4in at 1.25Hz  Test started 

  Measurement 1-1~1-10 

4/25/06  12,000 1.5±1.4in at 1.5Hz   

4/26/06 134,543 Measurement 2 

4/28/06 364,735 Measurement 3 

   4/28/06 7:21 pm Wire break(1) 

   4/29/06 6:40am Wire break(2) 

   4/29/06 7:41 pm Wire break(3) 

   4/29/06 7:52 pm Wire break(4) 

5/01/06 748,655 Measurement 4 

   5/2/06 6:49 am Wire break(5) 

   5/2/06 6:59 pm Wire break(6) 

5/04/06 1,027,314 Measurement 5 

   5/8/06 6:23 am Wire break(7) 

   5/8/06 6:38 pm Wire break(8) 

5/09/06 1,651,467 Test terminated 

  Final measurement 6 

 



Appendix I: Concrete Block Design 

 

The concrete block was designed to support prestressing force of the tendon 

specimens. The computation details are given as below: 

Prestressing:  

12 × 0.2185 × 0.6 × 270 = 425 kip (Tendon 01) 

9 × 0.2185 × 086 × 270 = 425 kip (Tendon 02) 

Clearance distance from the center to edge of the surface for VSL anchor type E:  

14.25/2 + cover (1.5 in.) ≈  9 in. 

where,  fy = 60 ksi , f'c = 4000 psi  

Concrete block dimension was chosen as 18 × 18 × 24 in. 

1) Bursting Force: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

h
h

PT b125.0  = ⎟
⎠
⎞

⎜
⎝
⎛ −××

18
10142525.0 = 47.2 kip  

The required number of #4 stirrups to keep the stress in reinforcement below 0.5 fy is  

)605.0()2.02(
2.47

×××
 = 3.9    Use 5- #4 @ 4 in   

2) Spalling Force:  

0.02 × P = 0.02 × 425 = 8.5 kip 

)305.0(2.0
5.8
××

 = 1.4    Use 2-# 4 U bars at the face of the block. 

The reinforcement of the concrete block is summarized in Figure I.1. 
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5- #4@4#5

#5 Spiral

Anchor Plate

24"

18
"

18"

#4 U bar

 
Figure I.1 Reinforcement Arrangement for Concrete Block 

 

Bearing stress was considered by using #5 spiral provided by the VSL. The 

compressive test for cylinder proved the concrete satisfied the design assumption (Table 

I.1).  

 

Table I.1 Compressive Test Results (ksi) 
Sample 1 2 3 Average 

7 days 3.67 3.50 3.44 3.55 

28 days 4.70 4.54 4.66 4,64 
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Appendix J: Summarized Schedule for Tendon 01 

 

Table J.1: Summarized Schedule for Tendon 01 

Date Cycle Configuration Wire Break Report Remarks 

1/04/06  Initial measurement 0 

1/04/06 0 0±0.5″  at 2.0Hz  Test started 

1/05/06 155,358 Measurement 1 

  1/8/06 11:13 PM SoundPrint report (1) 

  1/9/06 7:31 AM SoundPrint report (2) 

1/09/06 809,410 Measurement 2 

  1/10/06 12:49 AM SoundPrint report (3) 

  1/10/06 7:46 AM SoundPrint report (4) 

  1/10/06 8:26 AM SoundPrint report (5) 

  1/10/06 10:00 AM SoundPrint report (6) 
Broken during Test 

1/10/06 957,348 Measurement 3 

  1/10/06 8:09 PM SoundPrint report (7) 

  1/10/06 8:43 PM SoundPrint report (8) 

1/10/06 1,030,133  Temporary stop 

  1/11/06 10:35 AM SoundPrint report (9) 
Broken during test 

1/11/06 1,030,714 Measurement 4 

1/11/06 1,047,695 0±0.3″ at 2.0Hz  Reconfiguration 

1/12/06    Temporary stop 

1/13/06 1,248,230 0.22±0.2″ at 2.0Hz  Restart 

   1/13/0610:59 AM SoundPrint report (10) 

   1/14/06 7:00 AM SoundPrint report (11) 

1/15/06  Measurement 5 

1/15/06 1,593,858 0.22±0.2″at 3.5Hz  Reconfiguration 

   1/16/06 3:36 AM SoundPrint report (12) 

1/16/06 1,846,850 Measurement 6 

1/16/06  0.22±0.2″at 4.0Hz  Reconfiguration 

1/17/06  0.30±0.28″at 3.5 Hz  Reconfiguration 

1/18/06  0.40±0.38″at 2.5Hz  Reconfiguration 

1/19/06 2,623,439 0.50±0.48″ at 2.5 Hz  Reconfiguration 

1/19/06  Measurement 7 
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1/19/06 2,660,152 0.6±0.58″ at 2.0 Hz  Reconfiguration 

1/19/06 2,726,011 0.65±0.58″at 2.0Hz  Reconfiguration 

1/20/06 2,814,775 0.75±0.6″ at2.5 Hz  Reconfiguration 

1/20/06 2,814,504 Measurement 8 

   1/20/06 12:19AM SoundPrint report (13) 

1/20/06 2,861,425 0.8±0.6″ at2.5 Hz  Reconfiguration 

   1/20/06 4:47 PM SoundPrint report (14) 

1/21/06  Measurement 9 

1/21/06 3,026,868 0.9±0.6″ at 2.0Hz  Reconfiguration 

1/22/06  Measurement 10 

1/22/06 3,201,894 0.9±0.65″ at 2.0Hz  Reconfiguration 

1/23/06 3,369,590 1.1±0.65″ at 2.0 Hz  Reconfiguration 

   1/23/06 11:57 AM SoundPrint report (15) 

1/23/06 3,400,336 1.2±0.6″ at 2.0 Hz  Reconfiguration 

1/23/06 3,416,880 1.3±0.6″ at2.0 Hz  Reconfiguration 

   1/23/06 8:06 PM SoundPrint report (16) 

   1/24/06 2:29 AM SoundPrint report (17) 

1/24/06  Measurement 11 

1/24/06 3,532,401 1.4±0.6″ at 2.0 Hz  Reconfiguration 

   1/24/06 4:23 PM SoundPrint report (18) 

   1/25/06 1:04 AM  SoundPrint report (19) 

   1/25/06 9:49 AM SoundPrint report (20)

1/25/06 3,715,920 Measurement 12 

1/25/06 3,773,862 1.5±0.6″ at 2.0Hz  Reconfiguration 

1/25/06 3,797,690 1.6±0.6″ at 2.0 Hz  Reconfiguration 

  1/26/0610:28 AM SoundPrint report (21)

1/26/06 3,904,211 Test terminated 

  Final measurement 13 

 
 



Appendix K: Natural Frequencies of Tendon Specimens 

 

The times series acquired from the frequency measurement are converted into 

frequency domain by Fast Fourier Transformation. The test results are displayed in 

Figure K.1 through Figure K.14 for Tendon 01 and Figure K.15 though Figure K.39 for 

Tendon 02, respectively. 

K.1 TENDON 01 
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Figure K.1 Normalized Root Mean Square (RMS) of NF 0 
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Figure K.2 Normalized Root Mean Square (RMS) of NF 1 
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Figure K.3 Normalized Root Mean Square (RMS) of NF 2 
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Figure K.4 Normalized Root Mean Square (RMS) of NF 3 
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Figure K.5 Normalized Root Mean Square (RMS) of NF 4 
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Figure K.6 Normalized Root Mean Square (RMS) of NF 5 
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Figure K.7 Normalized Root Mean Square (RMS) of NF 6 
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Figure K.8 Normalized Root Mean Square (RMS) of NF 7 
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Figure K.9 Normalized Root Mean Square (RMS) of NF 8 
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Figure K.10 Normalized Root Mean Square (RMS) of NF 9 
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Figure K.11 Normalized Root Mean Square (RMS) of NF 10 
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Figure K.12 Normalized Root Mean Square (RMS) of NF 11 
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Figure K.13 Normalized Root Mean Square (RMS) of NF 12 
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Figure K.14 Normalized Root Mean Square (RMS) of NF 13 
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K.2 TENDON 02 
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Figure K.15 Normalized Root Mean Square (RMS) of NF 0-0 
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Figure K.16 Normalized Root Mean Square (RMS) of NF 0-1 

 290



0 20 40 60 80 100 120
0

0.5

1

Acc 1
Acc 2

0 20 40 60 80 100 120
0

0.5

1

N
or

m
al

iz
ed

 R
M

S Acc 1
Acc 2

0 20 40 60 80 100 120
0

0.5

1

Frequency (Hz)

Position 1

Position 2

Position 3
Acc 1
Acc 2

 
Figure K.17 Normalized Root Mean Square (RMS) of NF 0-3 
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Figure K.18 Normalized Root Mean Square (RMS) of NF 0-2 
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Figure K.19 Normalized Root Mean Square (RMS) of NF 1 
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Figure K.20 Normalized Root Mean Square (RMS) of NF 2 
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Figure K.21 Normalized Root Mean Square (RMS) of NF 3 
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Figure K.22 Normalized Root Mean Square (RMS) of NF 4 
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Figure K.23 Normalized Root Mean Square (RMS) of NF 5 
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Figure K.24 Normalized Root Mean Square (RMS) of NF 6 
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Figure K.25 Normalized Root Mean Square (RMS) of NF 7 
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Figure K.26 Normalized Root Mean Square (RMS) of NF 8 
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Figure K.27 Normalized Root Mean Square (RMS) of NF 9 
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Figure K.28 Normalized Root Mean Square (RMS) of NF 10 
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Figure K.29 Normalized Root Mean Square (RMS) of NF 11 
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Figure K.30 Normalized Root Mean Square (RMS) of NF 12 
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Figure K.31 Normalized Root Mean Square (RMS) of NF 13 
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Figure K.32 Normalized Root Mean Square (RMS) of NF 14 
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Figure K.33 Normalized Root Mean Square (RMS) of NF 15 
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Figure K.34 Normalized Root Mean Square (RMS) of NF 16 
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Figure K.35 Normalized Root Mean Square (RMS) of NF 17 
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Figure K.36 Normalized Root Mean Square (RMS) of NF 18 
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Figure K.37 Normalized Root Mean Square (RMS) of NF 19 
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Figure K.38 Normalized Root Mean Square (RMS) of NF 20 
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Figure K.39 Normalized Root Mean Square (RMS) of NF 21 
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Appendix L: Corrosion Propagation in Tendon 01 

 

Aggressive corrosion was identified from the anchor heads of Tendon 01 when 

the test was terminated. The surface of the anchor head was originally designed to be 

covered with grout. However, the space in the anchor cap was not filled with grout and 

more than half of surface of the anchor head was exposed to the air. This observation was 

considered to be important in three points:  

 Considerable corrosion developed in the short period  

 Qualified post-tensioning hardwares and materials were used for the construction 

 The specimen was only located in the indoor laboratory environment  

Tendon 01 was 36-ft long and comprised twelve 0.6-in. strands (Figure L.1). The 

post-tensioning components, VSL ECI 6-12 were used for the construction. This model 

included anchor heads, strands wedges, HDPE pipe, etc. The post-tensioning ducts were 

filled with a prepacked grout, Sika 300PT after stressing strands. The grouting was 

conducted on Nov. 11, 2005 and the corrosion was found on Jan. 26, 2006; a total of 76 

days.  

 
Figure L.1 Overview of Tendon 01 
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When each grout cap was opened, transparent water flowed from the grout cap 

and unfavorable odor was felt. The surface of the anchor head in south end was covered 

with grout about half but nearly none of grout existed in the anchor head in north end 

(Figure L.2c and d). The corrosion products were colored light-brown initially but tainted 

to dark-brown after exposing to the air. No corrosion was observed from the surface of 

the anchor heads covered with grout.  

 

 
(a) After stressing (b) Inlet and vent for grouting 

  
(c) Anchor head (north) (d) Anchor head (south) 

Figure L.2 Anchor Head Status 

No grout void was identified along the length of the specimen (Figure L.3), which 

indicated that grout did not flow over the anchor heads during the grouting. The existence 

of the transparent water in the anchor cap proved that the material separation between 

grout paste and water occurred; the grout bleeding. However, considering that condition 

of grout was intact along the length, the grout bleeding was unlikely to result from grout 
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material. Further dissembling of the specimen concluded that corrosion developed only at 

the exposed surface of the anchor heads and the anchor plates (Figure L.4). 

 
(a) Middle section (b) Concrete block 

 
(c) Anchor plate (d) Anchor head 

Figure L.3 Grouting Condition at Various Locations 

The grout bleeding generally occurs soon after the grouting procedure before the 

grout is hardened. In Tendon 01, the grout appeared to not penetrate into the holes in the 

anchor heads and rather separate into paste and water. The grout was pumped from the 

south end to north end. The grout inlet was located at the face of the anchor plate and two 

grout outlets were located on top of each concrete block (Figure L.5). The pumping was 

terminated after considerable grout flowed from the outlets.  

The observations made during the autopsy suggest that the pressure of the pump 

was not sufficient to flow grout over the anchor head. The grout covered more the surface 

of the anchor head in south end where the electric pump was located than north end; thus, 

higher pressure was expected in south end than north end.  
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(a) Bearing plate (b) Anchor head (north) 

 
(c) Strands and wedges (south) (d) Strands and wedges (north) 

Figure L.4 Corrosion Extent on Anchor Head and Plate 

The pressure resistance against applied pressure could increase by the trapped air 

in the anchor cap. The constructed anchor cap had the metal screw fitted a hole at top 

(Figure L.6a). This small hole appeared to intend to provide the air path to lower the 

pressure inside of the anchor cap during the grouting and then sealed using the metal 

screw later. However, the function of the screw was not understood during the grouting 

procedure; thus, the screw was initially installed to close the hole. As a result, it was 

likely that the difference in pressure prohibited for grout to flow into the anchor cap. The 

function of the metal screw was not explained in the drawings provided by the 

manufacturer.  
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Figure L.5 Grout Flow of Tendon 02 

The modified type of the anchor cap was recognized from the another project in 

the Ferguson Structural Engineering Laboratory (Figure L.6b). The cylinder was 

positioned on top of the anchor cap to provide air path and a small cap was designed to 

function as the metal screw in Tendon 01.  

 

 
(a) Metal screw (b) Alternative grout cap 

Figure L.6 Alternative Grout Cap 
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Appendix M: Acid Induced Corrosion on Strand without 

Prestressing 

 

The preliminary acid immersion test was conducted before the acid immersion of 

Tendon 02. A 6-ft long 0.6-in. diameter strand exposed to a sodium chloride solution for 

2 months was submerged locally in a 15% of hydrochloric acid solution for 12 days.  

The strand was held by two wood supports from the end and pushed through the 

two holes of a plastic vessel (Figure M.1). After the holes were sealed using a sealant, the 

vessel was filled with the acid solution. The opening of the vessel was closed to prevent 

the evaporation of the solution. The strand status was visually observed. 

 

 
Figure M.1 Acid Immersion Test 

When the acid solution contacted metal, vigorous chemical reaction occurred. The 

corrosion products were removed first and bubbles covered the surface of the strand. 

After a one day of immersion, considerable particles precipitated in bottom and an 

amount of particles increased as the immersion period increased. At 12 days of 

immersion, the acid solution discolored in brown and the bubbles were observed again. 

The test was terminated due to limitation in visual observation. A series of observations 

are displayed in Figure M.2.  
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Initiation 0.5 day 

1 day 5 day 

7 day 12 day 

Figure M.2 Preliminary Strand Immersion in Hydrochloric Acid Solution 

 

After the test was terminated, two significant pitting was identified (Figure M.3); 

but neither of pitting was located within the exposed region to the solution. These pittings 

positioned about 1 to 1.5-in. from exposed surface. The acid solution likely flowed 

through inter wire space.  
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Figure M.3 Pitting after 12 days of Immersion 
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Appendix N: Estimation of Cross-Sectional Properties 

 

The computed sectional properties for the idealized sections of the cable 

specimens and tendon specimens are presented in this section. 

The computation of sectional properties based on given constants such as the 

elastic modulus of strands and grout, area of strand etc. The given constants are presented 

in Table N.1.  

Table N.1 Constants for Computation 
Strand: 

E = 29,400 ksi 

Area = 0.2208 in2

Diameter = 0.6 in. 

Unit weight = 0.74 lb/ft 

Diameter of wire = 0.2 in. 

Grout: 

E = 3,500 ksi 

Wet density = 125 lb/ft3

n=Estrand/Egrout = 8.42 

HDPE:  

density = 60 lb/ft3

 

N.1 CABLE SPECIMEN 

The section of the cable specimen consisted of two 0.6-in. strands. Idealized 

section is presented in Table N.2 and the computation of mass quantity and the moment 

of inertia is given Table N.3 and Table N.4, respectively. 

 

Table N.2 Sectional Dimension of Cable Specimen 

 

 

Duct: 

Inner diameter: 3.35 in. 

Outer diameter: 3.54 in. 

 

(a) Idealized section (b) Dimension  
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Table N.3 Computation of Mass Quantity of Cable Specimen 
Strand: 

Ws = 0.74 × 2 = 1.48 lb/ft 

Grout: 

Ag = (1/4×π×3.352 - 2×0.2208) × 1.05 = 8.80 in 2 (5% for ribs) = 0.061 ft2  

Wg = 125 × 0.061 = 7.64 lb/ft 

Duct: 

Ad = 1/4×π× (3.542-3.352) = 1.01 in2 = 0.007 ft2 

Wd= 60 × 0.007 = 0.42 lb/ft 

Total: 

∑ W= Ws + Wg + Wd = 1.48 + 7.64 + 0.42 = 9.54 lb/ft 

 

Table N.4 Computation of Moment of Inertia of Cable Specimen 
Strand: 

Iind (single strand) = 7×1/64×π ×0.24 + 0.2208 /7 × (2×0.22+4× (0.2/2)2) = 0.00435 in4

Is = 2×0.00435 + 0.2208 × (2 × 0.652) = 0.195 in4 

Grout: 

Ig = 1/64×π ×3.354-0.195 = 5.989 in4 

Ig /n = 5.989/8.40 = 0.71 in4 

Total: 

∑ I = Is  + Ig /n = 0.195 + 0.71 = 0.908 in4 = 0.000044 ft4 

EI = 29,400 × 0.000044 = 185.4 kip-ft2

 

 



N.2 TENDON 01 

Tendon 01 consisted of twelve 0.6-in strands stressed to 60% of GUTS. Idealized 

section is presented in Table N.5 and the computation of mass quantity and the moment 

of inertia is given Table N.6 and Table N.7, respectively. 

 

Table N.5 Sectional Dimension of Tendon 01 

 

 

Duct: 

Inner diameter: 2.875 in. 

Outer diameter: 3.125 in. 

 

(a) Idealized section (b) Dimension 

 

Table N.6 Computation of Mass Quantity of Tendon 01 
Strand 

Ws = 0.74 × 12 = 8.88 lb/ft 

Grout 

Ag = (1/4×π×2.8752 - 12×0.2208) × 1.05 = 4.06 in 2 = 0.028 ft2  (5% for ribs) 

Wg = 125 × 0.028 = 3.50 lb/ft 

Duct 

Ad = 1/4×π× (3.1252-2.8752) = 1.18 in2 = 0.008 ft2 

Wd = 60 × 0.008 = 0.49 lb/ft 

Total 

∑ W= Ws + Wg + Wd = 8.88 + 3.50 + 0.49 = 12.87 lb/ft 
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Table N.7 Computation of Moment of Inertia of Tendon 01 
Computation of centroid: 

Strand 

∑ As·ds = 

 1×1.14×0.2208 + 2×0.86×0.2208+4×0.3×0.2208-3×0.57×0.2208-2×1.08×0.2208 = 0.042 

Centroid 

∑ As·ds(n-1) / {As(n-1)+ Ag}= 

0.042× (8.40-1) / {0.2208×12× (8.40-1) + 1/4×π ×2.8752 }= 0.012 in. 

 

Computation of moment of inertia: 

Strand  

Iind  = 0.00435 in4

∑ Is = 12×0.00435 + 0.2208 × (4×0.32 + 2×0.862 +1×1.142 +3×0.572 +2×1.082) = 1.475 in4 

Grout 

Ig = 1/64×π ×2.8754-1.475 = 1.880 in4 

Total 

∑ Itrans = Is + Ig/n = 1.475 + 1.880/8.40 = 1.699 in4 ≈ 0.000082 ft4

EI = 346.8 kip-ft2

 

 



N.3 TENDON 02 

Tendon 02 consisted nine 0.6-in. strands stressed to 80% of GUTS. Idealized 

section is presented in Table N.8 and the computation of mass quantity and the moment 

of inertia is given Table N.9 and Table N.10, respectively. 

 

Table N.8 Sectional Dimension of Tendon 02 

 

 

Duct: 

Inner diameter: 2.875 in. 

Outer diameter: 3.125 in. 

 

(a) Idealized section (b) Dimension 

 

 

Table N.9 Computation of Mass Quantity of Tendon 02 
Strand 

Ws = 0.74 × 9 = 6.66 lb/ft 

Grout 

Ag = (1/4×π×2.8752 - 9×0.2208) × 1.05 = 5.71 in 2 = 0.040 ft2  (5% for ribs) 

Wg = 125 × 0.040 = 4.96 lb/ft 

Duct 

Ad = 1/4×π× (3.1252-2.8752) = 1.18 in2 = 0.008 ft2 

Wd = 60 × 0.008 = 0.49 lb/ft 

Total 

∑ W= Ws + Wg + Wd = 6.66 + 4.96 + 0.49 = 12.11 lb/ft 
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Table N.10 Computation of Moment of Inertia of Tendon 02 
Computation of centroid: 

Strand 

∑ As·ds = 

4×0.3×0.2208 + 3×-0.57×0.2208 + 2×-1.08×0.2208 = -0.59  

Centroid 

∑ As·ds(n-1) / {As(n-1)+ Ag}= 

-0.583× (8.40 -1) / (0.2208 ×9× (8.40-1) +1/4×π ×2.8752 ) = -0.21 in. 

 

Computation of moment of inertia: 

Strand  

Iind  = 0.00435 in4 

∑ Is =  

9×0.00435 + 0.2208 × (4×(0.3+0.21)2 + 3×(-0.57+0.21)2 +2×(-1.08+0.21)2 = 0.690 in4 

Grout 

Ig = 1/64×π ×2.8754 +1/4×π ×2.875×0.212-0.69 = 2.938 in4 

Total 

∑ Itrans = Is + Ig/n = 0.69 + 2.938/8.40 = 1.040 in4 ≈ 0.000050 ft4

EI = 212.4 kip-ft2

 



Appendix O: Sensitivity of Structural Parameters 

O.1 CABLE 01 
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Figure O.1  Sensitivity of Structural Parameters from Taut String Model 
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Figure O.2  Sensitivity of Structural Parameters from Stiff String Model 

 

O.2 CABLE 02 
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Figure O.3  Sensitivity of Structural Parameters from Taut String Model 
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Figure O.4  Sensitivity of Structural Parameters from Stiff String Model 
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O.3 CABLE 03 
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Figure O.5  Sensitivity of Structural Parameters from Taut String Model 
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Figure O.6  Sensitivity of Structural Parameters from Stiff String Model 

O.4 TENDON 01 
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Figure O.7  Sensitivity of Structural Parameters from Taut String Model 
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Figure O.8  Sensitivity of Structural Parameters from Stiff String Model 

 

O.5 TENDON 02 
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Figure O.9  Sensitivity of Structural Parameters from Taut String Model 
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Figure O.10  Sensitivity of Structural Parameters from Stiff String Model 
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